📄 run_amer.m
字号:
%===========================================================================
% Amer Noise Level Estimation (by europium 2008)
%===========================================================================
clear all;
close all;
clc;
img_id = 30;
w_size = 5;
th = 25;
% Estimation = 1 : Averaging local standard deviations
% Estimation = 2 : Adaptive averaging local standard deviations(mean of 'local std - ref_std')
% Estimation = 3 : Histogram Approximation (68% -> sigma)
% Adaptive = 0 : No Adaptive
% Adaptive = 1 : Bosco(est_std) -> Gaussian Filtering (sigma = est_std, Homo = loc_std < th)
% Adaptive = 2 : Bosco(est_std) -> Gaussian Filteing (sigma = est_std, Homo = abs(est_std - loc_std) < th)
Estimation = 1; %default = 1
Adaptive = 0; %default = 0
showimg = 0;
tic
for i=1:15
std = i;
[est_std(i), blknum(i), homoblk(i)] = amer(img_id, std, w_size, th, Estimation, Adaptive, showimg);
est_std
end
toc
figure;
plot(1:15, est_std,'b-o');hold on;
plot(1:15,1:15, 'r');hold off;grid
xlabel('Given standard deviation');
ylabel('Estimated standard deviation');
% for i=1:15
% text(i-0.5,est_std(i)+1, [num2str(homoblk(i))]);
% end
title(['image id=' ,num2str(img_id),', window size=' ,num2str(w_size), ', threshold =', num2str(th), ' ,blk number =', num2str(blknum(1))]);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -