📄 exaktmimo.m
字号:
% EXAKTMIMO.M - Exact linearization for MIMO systems with the same number of inputs and outputs
% (this m-file is a part of NelinSys, see details below)
%
% The application carries out computations of state-coordinates
% transformation as well as nonlinear feedback according to
% the rules of exact linearization for a Nth-order MIMO system,
% with the same number of inputs and outputs, described by state
% equations: .
% x = f(x) + g(x) u
% y = h(x)
%
% Symbolic Math Toolbox is used on a large scale. System state variables
% HAVE TO BE denoted as x1, ..., xN, system inputs as u1, ..., uM and
% inputs of the whole linearization loop as v1, ..., vM.
%
% If you need to use other symbols, you have to specify them
% to the program explicitly before you use them in any expression.
%
% NelinSys - a program tool for analysis and synthesis of nonlinear control systems
% based on MATLAB/Simulink 5.2
%
% (C) 2002-2005, Martin Ondera (eskimo@pobox.sk) (Martin.Ondera@stuba.sk)
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
%
% Please, see the LICENSE.TXT file to read the full license.
%
clc;
clear;
disp('Exact linearization for MIMO systems with the same number of inputs and outputs');
disp('-------------------------------------------------------------------------------');
disp(' . ');
disp('State-space equations: x = f(x) + g(x) u ');
disp(' y = h(x) ');
disp(' ');
n = input('System order: ');
disp(' ');
% Definicia symbolov pre stavove premenne %
x = sym(zeros(1,n));
for k = 1 : n
eval(sprintf('syms x%d', k));
x(:,k) = eval(sprintf('x%d',k));
end
% Definicia dalsich symbolov (ak su potrebne) %
s = input('Specify parameters'' identifiers (separated by spaces), if there are any: ', 's');
disp(' ');
if not(isempty(s))
eval(sprintf('syms %s', s))
end;
F = input('System matrix: f(x) = ');
G = input('Input matrix: g(x) = ');
H = input('Output matrix: h(x) = ');
disp(' ');
% Dekodovanie poctu vstupov podla rozmerov matice G %
nin = size(G);
nin = nin(1,2);
% Dekodovanie poctu vystupov podla rozmerov matice H %
nout = size(H);
nout = nout(1,1);
% Ak pocet vstupov a vystupov nie je rovnaky, vyhlas chybu %
if (nin ~= nout)
disp('ERROR: The number of system inputs is not the same as the number of outputs!');
disp(' ');
return;
end
% Vektorovy relativny stupen systemu - inicializacia %
r = ones(1,nout);
% Definicia symbolov pre vstup sustavy a vstup URO %
syms u v;
for k = 1 : nout
eval(sprintf('syms v%d', k));
v(k,:) = sprintf('v%d', k);
end
clear Lf Lg;
% Lf = [Lf(h1(x)) ... Lf(hN(x)) ; ... ; Lf^r(h1(x)) ... Lf^r(hN(x))] kde r = max {rI} %
% Lg = [Lg1Lf^(r1-1)(h1(x)) ... LgMLf^(r1-1)(h1(x)) ; ... ; Lg1Lf^(rN-1)(hN(x)) ... LgMLf^(rN-1)(hN(x))] %
% Vypocet Lieovych derivacii pre kazdy vystup h1(x) az hN(x) %
for k = 1 : nout
% Vypocet Lg = Lieovych derivacii pre k-ty vystup vzhladom k vstupom g1(x) az gM(x) %
for l = 1 : nin
Lg(k,l) = jacobian(H(k), x) * G(:,l);
end
% Vypocet Lf = Lieovych derivacii pre k-ty vystup vzhladom k f(x) %
Lf(r(k),k) = jacobian(H(k), x) * F;
end
% Lieove derivacie sa pocitaju dovtedy, kym je matica autonomnosti singularna %
while (det(Lg) == 0)
% Vypocet Lieovych derivacii pre kazdy vystup h1(x) az hN(x) %
for k = 1 : nout
% Derivuj len vtedy, ak sa este doteraz nenarazilo na niektory vstupny signal %
if (Lg(k,:) == zeros(1,nin))
% Zvys prislusny relativny stupen o jednotku %
r(k) = r(k) + 1;
% Vypocet Lg = Lieovych derivacii vzhladom ku g1(x) az gM(x) %
for l = 1 : nin
Lg(k,l) = jacobian(Lf(r(k)-1,k), x) * G(:,l);
end
% Vypocet Lf = Lieovych derivacii pre k-ty vystup vzhladom k f(x) %
Lf(r(k),k) = jacobian(Lf(r(k)-1,k), x) * F;
end
end
end
% Overenie riaditelnosti systemu (1. podmienka pre pouzitie exaktnej linearizacie) %
Q = sym(zeros(n,sum(r)));
Q(:,1) = G(:,1);
l = 1; cum_r = cumsum(r);
for k = 2 : sum(r)
if (k > cum_r(l))
l = l + 1;
Q(:,k) = G(:,l);
else
Q(:,k) = jacobian(Q(:,k-1),x) * F - jacobian(F,x) * Q(:,k-1);
end
end
% Ak determinant nie je cislo ale vyraz, nechaj rozhodnutie o riaditelnosti na pouzivatela %
if ~isempty(findsym(det(Q)))
disp('Controllability: system is controllable if the following expression is nonzero:');
pretty(simple(det(Q)));
% Ak je determinant ciselny, nenulovy, znamena to, ze system je riaditelny %
elseif (det(Q) ~= 0)
fprintf('Controllability: system is controllable.\n\n');
% Ak je determinant nulovy, system nie je riaditelny => predcasne ukoncit program %
else
disp('ERROR: Specified system is not controllable! ');
disp(' Exact linearization method cannot be applied!');
disp(' ');
return;
end
clear b;
% Extrakcia kompenzacneho vektora z Lf %
for k = 1 : nout
b(k,:) = Lf(r(k),k);
end
% Vypis transformacnych rovnic pre stavove premenne %
disp('Transformation equations: ');
disp(' ');
l = 1;
for k = 1 : nout
if (l == 1)
fprintf('q%d = %s\n\n', l, char(H(k)));
qx = sprintf('[%s', char(H(k)));
else
l = l + 1;
fprintf('q%d = %s\n\n', l, char(H(k)));
qx = sprintf('%s; %s', qx, char(H(k)));
end
for q = 2 : r(k)
l = l + 1;
fprintf('q%d = %s\n\n', l, char(Lf(q-1,k)));
qx = sprintf('%s; %s', qx, char(Lf(q-1,k)));
end
end
% Vytvorenie transformacnej matice pre pripadnu simulaciu %
qx = sprintf('%s]', qx);
% Vypis vektoroveho relativneho stupna systemu %
disp(' ');
disp('Relative degrees of subsystems: ');
disp(r);
% Vypis linearizacneho vztahu u = u(x,v) %
disp(' ');
disp('Nonlinear feedback: u = ');
% Vypis nelinearnej spatnej vazby %
u = simple(inv(Lg) * (-expand(b) + v));
pretty(u);
% Vypis varovania pre pripad existencie vnutornej dynamiky %
if (sum(r) < n)
disp(' ');
disp('WARNING: Total relative degree is lower than system order!!!');
disp(' It is essential to analyze stability of internal dynamics!');
disp(' In case of instability, results computed above must not be used!!!');
end
% Test, ci F,G,H obsahuju symbolicke konstanty %
premF = strrep(strrep(findsym(sym(F)),', ',''),',',' ');
premG = strrep(strrep(findsym(sym(G)),', ',''),',',' ');
premH = strrep(strrep(findsym(sym(H)),', ',''),',',' ');
% Premenne x1, x2, ..., xN su korektne, preskoc ich %
for k = 1 : n
premF = strrep(premF, sprintf('x%d',k), '');
premG = strrep(premG, sprintf('x%d',k), '');
premH = strrep(premH, sprintf('x%d',k), '');
end
% Otazka na uskutocnenie simulacie, ak F,G,H neobsahuju symbolicke konstanty %
if (isempty(premF) & isempty(premG) & isempty(premH))
disp(' ');
simul_ot = input('Do you want to run a simulation of designed control loop? (Y/N) ', 's');
if (simul_ot == 'Y' | simul_ot == 'y')
open_system('exakt_mimo');
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -