📄 exakt.m
字号:
% EXAKT.M - Exact linearization for SISO systems
% (this m-file is a part of NelinSys, see details below)
%
% The application carries out computations of state-coordinates
% transformation as well as nonlinear feedback according to
% the rules of exact linearization for a Nth-order SISO system
% described by state equations: .
% x = f(x) + g(x) u
% y = h(x)
%
% Symbolic Math Toolbox is used on a large scale. System state variables
% HAVE TO BE denoted as x1, ..., xN; system input is denoted as "u".
% The "v" symbol stands for the input of the whole linearization loop
% i.e. for the input of the exactly linearized system.
%
% If you need to use other symbols, you have to specify them
% to the program explicitly before you use them in any expression.
%
% NelinSys - a program tool for analysis and synthesis of nonlinear control systems
% based on MATLAB/Simulink 5.2
%
% (C) 2002-2005, Martin Ondera (eskimo@pobox.sk) (Martin.Ondera@stuba.sk)
%
% This program is free software; you can redistribute it and/or
% modify it under the terms of the GNU General Public License
% as published by the Free Software Foundation; either version 2
% of the License, or (at your option) any later version.
%
% This program is distributed in the hope that it will be useful,
% but WITHOUT ANY WARRANTY; without even the implied warranty of
% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
% GNU General Public License for more details.
%
% You should have received a copy of the GNU General Public License
% along with this program; if not, write to the Free Software
% Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
%
% Please, see the LICENSE.TXT file to read the full license.
clc;
clear;
disp('Exact linearization for SISO systems ');
disp('------------------------------------ ');
disp(' . ');
disp('State-space equations: x = f(x) + g(x) u ');
disp(' y = h(x) ');
disp(' ');
n = input('System order: ');
disp(' ');
% Definicia symbolov pre stavove premenne %
for k = 1 : n
eval(sprintf('syms x%d', k));
end
% Definicia symbolov pre vstup sustavy a vstup URO %
syms u v;
% Definicia dalsich symbolov (ak su potrebne) %
s = input('Specify parameters'' identifiers (separated by spaces), if there are any: ', 's');
disp(' ');
if not(isempty(s))
eval(sprintf('syms %s', s));
end
F = input('System matrix: f(x) = ');
G = input('Input matrix: g(x) = ');
H = input('Output matrix: h(x) = ');
disp(' ');
% Otestovanie spravnosti rozmerov matic F,G,H (podla "n") %
if ~all(size(F) == [n,1])
disp('ERROR: Invalid matrix dimensions: f(x) - cannot continue!');
disp(' ');
return;
end
if ~all(size(G) == [n,1])
disp('ERROR: Invalid matrix dimensions: g(x) - cannot continue!');
disp(' ');
return;
end
if ~all(size(H) == [1,1])
disp('ERROR: Invalid matrix dimensions: h(x) - cannot continue!');
disp(' ');
return;
end
% Vytvorenie vektora x ako x = [x1, x2, ..., xN] kvoli symbolickym operaciam %
x = sym(zeros(1,n));
for k = 1 : n
x(:,k) = eval(sprintf('x%d',k));
end
% Overenie riaditelnosti systemu (1. podmienka pre pouzitie exaktnej linearizacie) %
Q = sym(zeros(n,n));
Q(:,1) = G;
for k = 2 : n
Q(:,k) = jacobian(Q(:,k-1),x) * F - jacobian(F,x) * Q(:,k-1);
end
% Ak determinant nie je cislo ale vyraz, nechaj rozhodnutie o riaditelnosti na pouzivatela %
if ~isempty(findsym(det(Q)))
disp('Controllability: system is controllable if the following expression is nonzero:');
pretty(simple(det(Q)));
% Ak je determinant ciselny, nenulovy, znamena to, ze system je riaditelny %
elseif (det(Q) ~= 0)
fprintf('Controllability: system is controllable.\n\n');
% Ak je determinant nulovy, system nie je riaditelny => predcasne ukoncit program %
else
disp('ERROR: Specified system is not controllable! ');
disp(' Exact linearization method cannot be applied!');
disp(' ');
return;
end
% Relativny stupen systemu - inicializacia %
r = 1;
% Lieove derivovanie vystupu, dovtedy kym Lg == 0 %
syms Lg; Lg(r,:) = jacobian(H,x) * G;
syms Lf; Lf(r,:) = jacobian(H,x) * F;
while (Lg(r,:) == 0)
r = r + 1;
% Ak r > n a stale plati Lg == 0, metodu nemozno pouzit %
% Tato situacia by vzhladom na overenu riaditelnost nikdy nemala nastat %
if (r > n)
disp('ERROR: Relative degree seems to be higher than system order!');
disp(' Specified system is possibly not controllable! ');
disp(' ');
return;
end
Lg(r,:) = jacobian(Lf(r-1, :), x) * G;
Lf(r,:) = jacobian(Lf(r-1, :), x) * F;
end
% Vypis transformacnych rovnic pre stavove premenne %
disp('Transformation equations: ');
disp(' ');
fprintf(' q1 = '), disp(H);
qx = sprintf('[%s', char(H));
for k = 2 : r
fprintf(' q%d = ', k), disp(Lf(k-1,:));
qx = sprintf('%s; %s', qx, char(Lf(k-1,:)));
end
% Vytvorenie transformacnej matice pre pripadnu simulaciu %
qx = sprintf('%s]', qx);
fprintf('Relative degree of the system: %d\n\n', r);
fprintf('Nonlinear feedback: u = \n');
% Vypis nelinearnej spatnej vazby %
u = simple((1 / Lg(r,:)) * (-expand(Lf(r,:)) + v));
pretty(u);
% Vypis varovania pre pripad existencie vnutornej dynamiky %
if (r < n)
disp(' ');
disp('WARNING: Relative degree is lower than system order!!!');
disp(' It is essential to analyze stability of internal dynamics!');
disp(' In case of instability, results computed above must not be used!!!');
end
% Test, ci F,G,H obsahuju symbolicke konstanty %
premF = strrep(strrep(findsym(sym(F)),', ',''),',',' ');
premG = strrep(strrep(findsym(sym(G)),', ',''),',',' ');
premH = strrep(strrep(findsym(sym(H)),', ',''),',',' ');
% Premenne x1, x2, ..., xN su korektne, preskoc ich %
for k = 1 : n
premF = strrep(premF, sprintf('x%d',k), '');
premG = strrep(premG, sprintf('x%d',k), '');
premH = strrep(premH, sprintf('x%d',k), '');
end
% Otazka na uskutocnenie simulacie, ak F,G,H neobsahuju symbolicke konstanty %
if (isempty(premF) & isempty(premG) & isempty(premH))
disp(' ');
simul_ot = input('Do you want to run a simulation of designed control loop? (Y/N) ', 's');
if (simul_ot == 'Y' | simul_ot == 'y')
open_system('exakt_siso');
end
end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -