📄 non-atomic.h
字号:
#define _ASM_GENERIC_BITOPS_NON_ATOMIC_H_#include <asm/types.h>#define BITOP_MASK(nr) (1UL << ((nr) % BITS_PER_LONG))#define BITOP_WORD(nr) ((nr) / BITS_PER_LONG)/** * __set_bit - Set a bit in memory * @nr: the bit to set * @addr: the address to start counting from * * Unlike set_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */static inline void __set_bit(int nr, volatile unsigned long *addr){ unsigned long mask = BITOP_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); *p |= mask;}static inline void __clear_bit(int nr, volatile unsigned long *addr){ unsigned long mask = BITOP_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); *p &= ~mask;}/** * __change_bit - Toggle a bit in memory * @nr: the bit to change * @addr: the address to start counting from * * Unlike change_bit(), this function is non-atomic and may be reordered. * If it's called on the same region of memory simultaneously, the effect * may be that only one operation succeeds. */static inline void __change_bit(int nr, volatile unsigned long *addr){ unsigned long mask = BITOP_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); *p ^= mask;}/** * __test_and_set_bit - Set a bit and return its old value * @nr: Bit to set * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */static inline int __test_and_set_bit(int nr, volatile unsigned long *addr){ unsigned long mask = BITOP_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); unsigned long old = *p; *p = old | mask; return (old & mask) != 0;}/** * __test_and_clear_bit - Clear a bit and return its old value * @nr: Bit to clear * @addr: Address to count from * * This operation is non-atomic and can be reordered. * If two examples of this operation race, one can appear to succeed * but actually fail. You must protect multiple accesses with a lock. */static inline int __test_and_clear_bit(int nr, volatile unsigned long *addr){ unsigned long mask = BITOP_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); unsigned long old = *p; *p = old & ~mask; return (old & mask) != 0;}/* WARNING: non atomic and it can be reordered! */static inline int __test_and_change_bit(int nr, volatile unsigned long *addr){ unsigned long mask = BITOP_MASK(nr); unsigned long *p = ((unsigned long *)addr) + BITOP_WORD(nr); unsigned long old = *p; *p = old ^ mask; return (old & mask) != 0;}/** * test_bit - Determine whether a bit is set * @nr: bit number to test * @addr: Address to start counting from */static inline int test_bit(int nr, const volatile unsigned long *addr){ return 1UL & (addr[BITOP_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -