📄 omap2.c
字号:
/* * drivers/mtd/nand/omap2.c * * Copyright (c) 2004 Texas Instruments, Jian Zhang <jzhang@ti.com> * Copyright (c) 2004 Micron Technology Inc. * Copyright (c) 2004 David Brownell * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License version 2 as * published by the Free Software Foundation. */#include <linux/platform_device.h>#include <linux/dma-mapping.h>#include <linux/delay.h>#include <linux/mtd/mtd.h>#include <linux/mtd/nand.h>#include <linux/mtd/partitions.h>#include <linux/io.h>#include <asm/dma.h>#include <asm/arch/gpmc.h>#include <asm/arch/nand.h>#define DRIVER_NAME "omap2-nand"#define NAND_IO_SIZE SZ_4K#define NAND_WP_ON 1#define NAND_WP_OFF 0#define NAND_WP_BIT 0x00000010#define WR_RD_PIN_MONITORING 0x00600000#define GPMC_BUF_FULL 0x00000001#define GPMC_BUF_EMPTY 0x00000000static const char *part_probes[] = { "cmdlinepart", NULL }; #define NAND_Ecc_P1e (1 << 0)#define NAND_Ecc_P2e (1 << 1)#define NAND_Ecc_P4e (1 << 2)#define NAND_Ecc_P8e (1 << 3)#define NAND_Ecc_P16e (1 << 4)#define NAND_Ecc_P32e (1 << 5)#define NAND_Ecc_P64e (1 << 6)#define NAND_Ecc_P128e (1 << 7)#define NAND_Ecc_P256e (1 << 8)#define NAND_Ecc_P512e (1 << 9)#define NAND_Ecc_P1024e (1 << 10)#define NAND_Ecc_P2048e (1 << 11)#define NAND_Ecc_P1o (1 << 16)#define NAND_Ecc_P2o (1 << 17)#define NAND_Ecc_P4o (1 << 18)#define NAND_Ecc_P8o (1 << 19)#define NAND_Ecc_P16o (1 << 20)#define NAND_Ecc_P32o (1 << 21)#define NAND_Ecc_P64o (1 << 22)#define NAND_Ecc_P128o (1 << 23)#define NAND_Ecc_P256o (1 << 24)#define NAND_Ecc_P512o (1 << 25)#define NAND_Ecc_P1024o (1 << 26)#define NAND_Ecc_P2048o (1 << 27)#define TF(value) (value ? 1 : 0)#define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0 )#define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1 )#define P1e(a) (TF(a & NAND_Ecc_P1e) << 2 )#define P1o(a) (TF(a & NAND_Ecc_P1o) << 3 )#define P2e(a) (TF(a & NAND_Ecc_P2e) << 4 )#define P2o(a) (TF(a & NAND_Ecc_P2o) << 5 )#define P4e(a) (TF(a & NAND_Ecc_P4e) << 6 )#define P4o(a) (TF(a & NAND_Ecc_P4o) << 7 )#define P8e(a) (TF(a & NAND_Ecc_P8e) << 0 )#define P8o(a) (TF(a & NAND_Ecc_P8o) << 1 )#define P16e(a) (TF(a & NAND_Ecc_P16e) << 2 )#define P16o(a) (TF(a & NAND_Ecc_P16o) << 3 )#define P32e(a) (TF(a & NAND_Ecc_P32e) << 4 )#define P32o(a) (TF(a & NAND_Ecc_P32o) << 5 )#define P64e(a) (TF(a & NAND_Ecc_P64e) << 6 )#define P64o(a) (TF(a & NAND_Ecc_P64o) << 7 )#define P128e(a) (TF(a & NAND_Ecc_P128e) << 0 )#define P128o(a) (TF(a & NAND_Ecc_P128o) << 1 )#define P256e(a) (TF(a & NAND_Ecc_P256e) << 2 )#define P256o(a) (TF(a & NAND_Ecc_P256o) << 3 )#define P512e(a) (TF(a & NAND_Ecc_P512e) << 4 )#define P512o(a) (TF(a & NAND_Ecc_P512o) << 5 )#define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6 )#define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7 )#define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0 )#define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1 )#define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2 )#define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3 )#define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4 )#define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5 )#define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6 )#define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7 )#define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0 )#define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1 )struct omap_nand_info { struct nand_hw_control controller; struct omap_nand_platform_data *pdata; struct mtd_info mtd; struct mtd_partition *parts; struct nand_chip nand; struct platform_device *pdev; int gpmc_cs; unsigned long phys_base; void __iomem *gpmc_cs_baseaddr; void __iomem *gpmc_baseaddr;};/* * omap_nand_wp - This function enable or disable the Write Protect feature on * NAND device * @mtd: MTD device structure * @mode: WP ON/OFF */static void omap_nand_wp(struct mtd_info *mtd, int mode){ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned long config = __raw_readl(info->gpmc_baseaddr + GPMC_CONFIG); if (mode) config &= ~(NAND_WP_BIT); /* WP is ON */ else config |= (NAND_WP_BIT); /* WP is OFF */ __raw_writel(config, (info->gpmc_baseaddr + GPMC_CONFIG)); }/* * hardware specific access to control-lines * NOTE: boards may use different bits for these!! * ctrl: * NAND_NCE: bit 0 - don't care * NAND_CLE: bit 1 -> Command Latch * NAND_ALE: bit 2 -> Address Latch */static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl){ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); switch (ctrl) { case NAND_CTRL_CHANGE | NAND_CTRL_CLE: info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + GPMC_CS_NAND_COMMAND; info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; break; case NAND_CTRL_CHANGE | NAND_CTRL_ALE: info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + GPMC_CS_NAND_ADDRESS; info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; break; case NAND_CTRL_CHANGE | NAND_NCE: info->nand.IO_ADDR_W = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; info->nand.IO_ADDR_R = info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; break; } if (cmd != NAND_CMD_NONE) __raw_writeb(cmd, info->nand.IO_ADDR_W);}/* * omap_read_buf - read data from NAND controller into buffer * @mtd: MTD device structure * @buf: buffer to store date * @len: number of bytes to read * */static void omap_read_buf(struct mtd_info *mtd, u_char *buf, int len){ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; len >>= 1; while (len--) *p++ = cpu_to_le16(readw(info->nand.IO_ADDR_R));}/* * omap_write_buf - write buffer to NAND controller * @mtd: MTD device structure * @buf: data buffer * @len: number of bytes to write * */static void omap_write_buf(struct mtd_info *mtd, const u_char * buf, int len){ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; len >>= 1; while (len--) { writew(cpu_to_le16(*p++), info->nand.IO_ADDR_W); while (GPMC_BUF_EMPTY == (readl(info->gpmc_baseaddr + GPMC_STATUS) & GPMC_BUF_FULL)); }}/* * omap_verify_buf - Verify chip data against buffer * @mtd: MTD device structure * @buf: buffer containing the data to compare * @len: number of bytes to compare */static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len){ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); u16 *p = (u16 *) buf; len >>= 1; while (len--) { if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R))) return -EFAULT; } return 0;}/* * omap_wait - Wait function is called during Program and erase * operations and the way it is called from MTD layer, we should wait * till the NAND chip is ready after the programming/erase operation * has completed. * @mtd: MTD device structure * @chip: NAND Chip structure */static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip){ register struct nand_chip *this = mtd->priv; struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,mtd); int status = 0; this->IO_ADDR_W = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_COMMAND; this->IO_ADDR_R = (void *) info->gpmc_cs_baseaddr + GPMC_CS_NAND_DATA; while(!(status & 0x40)){ __raw_writeb(NAND_CMD_STATUS & 0xFF, this->IO_ADDR_W); status = __raw_readb(this->IO_ADDR_R); } return status;}/* * omap_dev_ready - calls the platform specific dev_ready function * @mtd: MTD device structure */static int omap_dev_ready(struct mtd_info *mtd){ struct omap_nand_info *info = container_of(mtd, struct omap_nand_info, mtd); unsigned int val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQSTATUS); if ((val & 0x100) == 0x100) { /* Clear IRQ Interrupt */ val |= 0x100; val &= ~(0x0); __raw_writel(val, info->gpmc_baseaddr + GPMC_IRQSTATUS); } else { unsigned int cnt = 0; while (cnt++ < 0x1FF) { if ((val & 0x100) == 0x100) return 0; val = __raw_readl(info->gpmc_baseaddr + GPMC_IRQSTATUS); } } return 1;}static int __devinit omap_nand_probe(struct platform_device *pdev){ struct omap_nand_info *info; struct omap_nand_platform_data *pdata; int err; unsigned long val; pdata = pdev->dev.platform_data; if (pdata == NULL) { dev_err(&pdev->dev, "platform data missing\n"); return -ENODEV; } info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL); if (!info) return -ENOMEM; platform_set_drvdata(pdev, info); spin_lock_init(&info->controller.lock); init_waitqueue_head(&info->controller.wq); info->pdev = pdev; info->gpmc_cs = pdata->cs; info->gpmc_baseaddr = pdata->gpmc_baseaddr; info->gpmc_cs_baseaddr = pdata->gpmc_cs_baseaddr; info->mtd.priv = &info->nand; info->mtd.name = pdev->dev.bus_id; info->mtd.owner = THIS_MODULE; err = gpmc_cs_request(info->gpmc_cs, NAND_IO_SIZE, &info->phys_base); if (err < 0) { dev_err(&pdev->dev, "Cannot request GPMC CS\n"); goto out_free_info; } /* Enable RD PIN Monitoring Reg */ if(pdata->dev_ready) { val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1); val |= WR_RD_PIN_MONITORING; gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG1, val); } val = gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG7); val &= ~(0xf << 8); val |= (0xc & 0xf) << 8; gpmc_cs_write_reg(info->gpmc_cs, GPMC_CS_CONFIG7, val); /* NAND write protect off */ omap_nand_wp(&info->mtd, NAND_WP_OFF); if (!request_mem_region(info->phys_base, NAND_IO_SIZE, pdev->dev.driver->name)) { err = -EBUSY; goto out_free_cs; } info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE); if (!info->nand.IO_ADDR_R) { err = -ENOMEM; goto out_release_mem_region; } info->nand.controller = &info->controller; info->nand.IO_ADDR_W = info->nand.IO_ADDR_R; info->nand.cmd_ctrl = omap_hwcontrol; info->nand.read_buf = omap_read_buf; info->nand.write_buf = omap_write_buf; info->nand.verify_buf = omap_verify_buf; /* * If RDY/BSY line is connected to OMAP then use the omap ready funcrtion * and the generic nand_wait function which reads the status register after * monitoring the RDY/BSY line. Otherwise use a standard chip delay which * is slightly more than tR (AC Timing) of the NAND device and read the * status register until you get a failure or success */ if (pdata->dev_ready) { info->nand.dev_ready = omap_dev_ready; info->nand.chip_delay = 0; } else { info->nand.waitfunc = omap_wait; info->nand.chip_delay = 50; } info->nand.options |= NAND_SKIP_BBTSCAN; if((gpmc_cs_read_reg(info->gpmc_cs, GPMC_CS_CONFIG1) & 0x3000) == 0x1000) info->nand.options |= NAND_BUSWIDTH_16; info->nand.ecc.mode = NAND_ECC_SOFT; /* DIP switches on some boards change between 8 and 16 bit * bus widths for flash. Try the other width if the first try fails. */ if (nand_scan(&info->mtd, 1)) { info->nand.options ^= NAND_BUSWIDTH_16; if (nand_scan(&info->mtd, 1)) { err = -ENXIO; goto out_release_mem_region; } } err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0); if (err > 0) add_mtd_partitions(&info->mtd, info->parts, err); else if (err < 0 && pdata->parts) add_mtd_partitions(&info->mtd, pdata->parts, pdata->nr_parts); else add_mtd_device(&info->mtd); platform_set_drvdata(pdev, &info->mtd); return 0;out_release_mem_region: release_mem_region(info->phys_base, NAND_IO_SIZE);out_free_cs: gpmc_cs_free(info->gpmc_cs);out_free_info: kfree(info); return err;}static int omap_nand_remove(struct platform_device *pdev){ struct mtd_info *mtd = platform_get_drvdata(pdev); struct omap_nand_info *info = mtd->priv; platform_set_drvdata(pdev, NULL); /* Release NAND device, its internal structures and partitions */ nand_release(&info->mtd); iounmap(info->nand.IO_ADDR_R); kfree(&info->mtd); return 0;}static struct platform_driver omap_nand_driver = { .probe = omap_nand_probe, .remove = omap_nand_remove, .driver = { .name = DRIVER_NAME, .owner = THIS_MODULE, },};MODULE_ALIAS(DRIVER_NAME);static int __init omap_nand_init(void){ printk(KERN_INFO "%s driver initializing\n", DRIVER_NAME); return platform_driver_register(&omap_nand_driver);}static void __exit omap_nand_exit(void){ platform_driver_unregister(&omap_nand_driver);}module_init(omap_nand_init);module_exit(omap_nand_exit);MODULE_LICENSE("GPL");MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -