📄 encryptdeshashmodule.cc
字号:
// DESHashEncryptionModule.cc: implementation of the CEncryptDESHashModule class.
/*/////////////////////////////////////////////////////////////////////////////
李亦
2006.06.
/*//////////////////////////////////////////////////////////////////////////////
//#include <platforms.h>
#include "server/encrypt/encryptEngine.h"
#include "server/encrypt/EncryptDESHashModule.h"
#include "server/net/IOSocket.h"
namespace CS
{
// ---------- Tables defined in the Data Encryption Standard documents ----------------------------
// Initial permutation IP
BYTE CEncryptDESHashModule::ip[64] =
{
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
// Final permutation IP^-1
BYTE CEncryptDESHashModule::fp[64] =
{
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25
};
// permuted choice table (key)
BYTE CEncryptDESHashModule::pc1[56] =
{
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4
};
// number left rotations of pc1
BYTE CEncryptDESHashModule::totrot[16] =
{
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
};
// permuted choice key (table)
BYTE CEncryptDESHashModule::pc2[48] =
{
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
// The s boxes
BYTE CEncryptDESHashModule::si[8][64] =
{
// S1
{ 14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13 },
// S2
{ 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9 },
// S3
{ 10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12 },
// S4
{ 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14 },
// S5
{ 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3 },
// S6
{ 12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13 },
// S7
{ 4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12 },
// S8
{ 13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11 }
};
// 32-bit permutation function P used on the output of the S-boxes
BYTE CEncryptDESHashModule::p32i[32] =
{
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25
};
DWORD CEncryptDESHashModule::sp[8][64]; // Combined S and P boxes
BYTE CEncryptDESHashModule::iperm[16][16][8]; // Initial permutations
BYTE CEncryptDESHashModule::fperm[16][16][8]; // Final permutations
int CEncryptDESHashModule::bytebit[8] = { 0200,0100,040,020,010,04,02,01 };
int CEncryptDESHashModule::nibblebit[4] = { 010,04,02,01 };
//CS_ENCRYPTHANDLER CEncryptDESHashModule::m_encryptEngine={NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL,NULL};
static CEncryptDESHashModule gs_DESHashEncrypt;
//////////////////////////////////////////////////////////////////////
// Construction/Destruction
//////////////////////////////////////////////////////////////////////
CEncryptDESHashModule::CEncryptDESHashModule()
{
m_encryptEngine.pInsert = Insert;
m_encryptEngine.pRemove = Remove;
m_encryptEngine.pQuery = Query;
m_encryptEngine.pStartup = Startup;
m_encryptEngine.pShutdown = Shutdown;
m_encryptEngine.pSetEncryptKey = SetEncryptKey;
m_encryptEngine.pSetDecryptKey = SetDecryptKey;
m_encryptEngine.pGetEncryptKey = GetEncryptKey;
m_encryptEngine.pGetDecryptKey = GetDecryptKey;
m_encryptEngine.pEncrypt = Encrypt;
m_encryptEngine.pDecrypt = Decrypt;
m_encryptEngine.pCreateNewKeys = CreateNewKeys;
m_encryptEngine.pFree = Free;
}
CEncryptDESHashModule::~CEncryptDESHashModule()
{
}
CS_ENCRYPTHANDLER * CEncryptDESHashModule::GetEncryptEngine(void)
{
return &gs_DESHashEncrypt.m_encryptEngine;
//return &m_encryptEngine;
}
#ifndef BIG_ENDIAN
// Byte swap a long
DWORD CEncryptDESHashModule::byteswap(DWORD x)
{
char *cp,tmp;
cp = (char *)&x;
tmp = cp[3];
cp[3] = cp[0];
cp[0] = tmp;
tmp = cp[2];
cp[2] = cp[1];
cp[1] = tmp;
return x;
}
#endif
// ---- initialize a perm array ----
void CEncryptDESHashModule::perminit(BYTE perm[16][16][8], BYTE p[64])
{
int i,j,k,l,m;
// Clear the permutation array
for (i=0; i<16; i++) {
for (j=0; j<16; j++) {
// Clear permutation
for (k=0; k<8; k++) {
perm[i][j][k]=0;
}
// each input nibble position
for (i=0; i<16; i++) {
// each possible input nibble
for (j = 0; j < 16; j++) {
// each output bit position
for (k = 0; k < 64; k++) {
// where does this bit come from
l = p[k] - 1;
// does it come from input posn
if ((l >> 2) != i) continue; // if not, bit k is 0
// any such bit in input?
if (!(j & nibblebit[l & 3])) continue;
// which bit is this in the byte?
m = k & 07;
perm[i][j][k>>3] |= (char)bytebit[m];
}
}
}
}
}
}
// ---- Initialize the lookup table for the combined S and P boxes ----
void CEncryptDESHashModule::spinit()
{
BYTE pbox[32];
int p,i,s,j,rowcol;
DWORD val;
// Compute pbox, the inverse of p32i.
// This is easier to work with
for(p=0;p<32;p++){
for(i=0;i<32;i++){
if(p32i[i]-1 == p){
pbox[p] = (char)i;
break;
}
}
}
// For each S-box
for(s = 0; s < 8; s++) {
// For each possible input
for(i=0; i<64; i++) {
val = 0;
// The row number is formed from the first and last
// bits; the column number is from the middle 4
rowcol = (i & 32) | ((i & 1) ? 16 : 0) | ((i >> 1) & 0xf);
for(j=0;j<4;j++) { // For each output bit
if(si[s][rowcol] & (8 >> j)){
val |= 1L << (31 - pbox[4*s + j]);
}
}
sp[s][i] = val;
}
}
}
// permute: takes an input block, passes it through a permutation
// (if desmode == 0) and returns an output block
void CEncryptDESHashModule::des_permute(BYTE *inblock, BYTE perm[16][16][8], BYTE *outblock)
{
int i,j;
BYTE *ib,*ob,*p,*q;
// Clear Output block
dMemset(outblock, 0, 8*sizeof(BYTE));
// Perform permutation
ib = inblock;
for (j = 0; j < 16; j += 2, ib++) { // for each input nibble
ob = outblock;
p = perm[j][(*ib >> 4) & 017];
q = perm[j + 1][*ib & 017];
for (i = 8; i != 0; i--){ // and each output byte
*ob++ |= *p++ | *q++; // OR the masks together
}
}
}
// The nonlinear function f(r,k), the heart of DES
DWORD CEncryptDESHashModule::f(DWORD r, BYTE subkey[8])
{
DWORD rval,rt;
// Run E(R) ^ K through the combined S & P boxes
// This code takes advantage of a convenient regularity in
// E, namely that each group of 6 bits in E(R) feeding
// a single S-box is a contiguous segment of R.
rt = (r >> 1) | ((r & 1) ? 0x80000000 : 0);
rval = 0;
rval |= sp[0][((rt >> 26) ^ *subkey++) & 0x3f];
rval |= sp[1][((rt >> 22) ^ *subkey++) & 0x3f];
rval |= sp[2][((rt >> 18) ^ *subkey++) & 0x3f];
rval |= sp[3][((rt >> 14) ^ *subkey++) & 0x3f];
rval |= sp[4][((rt >> 10) ^ *subkey++) & 0x3f];
rval |= sp[5][((rt >> 6) ^ *subkey++) & 0x3f];
rval |= sp[6][((rt >> 2) ^ *subkey++) & 0x3f];
rt = (r << 1) | ((r & 0x80000000) ? 1 : 0);
rval |= sp[7][(rt ^ *subkey) & 0x3f];
return rval;
}
// round: Do one DES cipher round
void CEncryptDESHashModule::des_round(int num, DWORD *block, BYTE kn[16][8])
{
// The rounds are numbered from 0 to 15. On even rounds
// the right half is fed to f() and the result exclusive-ORs
// the left half; on odd rounds the reverse is done.
if(num & 1)
block[1] ^= f(block[0],kn[num]);
else
block[0] ^= f(block[1],kn[num]);
}
// In-place decryption of 64-bit block
void CEncryptDESHashModule::des_dedes(BYTE *block, BYTE kn[16][8])
{
int i;
DWORD work[2], tmp;
// Initial permutation
des_permute(block,iperm,(BYTE *)work);
#ifndef BIG_ENDIAN
work[0] = byteswap(work[0]);
work[1] = byteswap(work[1]);
#endif
// Left/right half swap
tmp = work[0];
work[0] = work[1];
work[1] = tmp;
// Do the 16 rounds in reverse order
for (i=15; i >= 0; i--)
des_round(i,work, kn);
// Inverse initial permutation
#ifndef BIG_ENDIAN
work[0] = byteswap(work[0]);
work[1] = byteswap(work[1]);
#endif
des_permute((BYTE *)work,fperm,block);
}
// setkey:
// initializes key schedule array
// key is 64 bits (will use only 56)
void CEncryptDESHashModule::des_setkey(BYTE *key, BYTE kn[16][8])
{
BYTE pc1m[56]; // place to modify pc1 into
BYTE pcr[56]; // place to rotate pc1 into
register int i,j,l,m;
// Clear key schedule
for (i=0; i<16; i++) {
for (j=0; j<8; j++) {
kn[i][j]=0;
}
}
// Convert pc1 to bits of key
for(j=0; j<56; j++) {
l=pc1[j]-1; // integer bit location
m = l & 07; // find bit
pc1m[j]= (char)((key[l>>3] & // find which key byte l is in
bytebit[m]) // and which bit of that byte
? 1 : 0); // and store 1-bit result
}
// Key chunk for each iteration
for (i=0; i<16; i++) {
// Rotate pc1 the right amount
for (j=0; j<56; j++)
pcr[j] = pc1m[(l=j+totrot[i])<(j<28? 28 : 56) ? l: l-28];
// Rotate left and right halves independently
for (j=0; j<48; j++) { // select bits individually
// check bit that goes to kn[j]
if (pcr[pc2[j]-1]) {
// mask it in if it's there
l= j % 6;
kn[i][j/6] |= (BYTE)(bytebit[l] >> 2);
}
}
}
}
void CEncryptDESHashModule::des_str_to_key(BYTE *str, BYTE *key)
{
int i;
key[0] = (str[0]>>1);
key[1] = ((str[0]&0x01)<<6) | (str[1]>>2);
key[2] = ((str[1]&0x03)<<5) | (str[2]>>3);
key[3] = ((str[2]&0x07)<<4) | (str[3]>>4);
key[4] = ((str[3]&0x0F)<<3) | (str[4]>>5);
key[5] = ((str[4]&0x1F)<<2) | (str[5]>>6);
key[6] = ((str[5]&0x3F)<<1) | (str[6]>>7);
key[7] = (str[6]&0x7F);
for (i=0;i<8;i++)
key[i] = (BYTE)(key[i]<<1);
}
int RPGAPI2 CEncryptDESHashModule::Insert(void)
{
spinit();
perminit(iperm, ip);
perminit(fperm, fp);
return E_IOOK;
}
int RPGAPI2 CEncryptDESHashModule::Remove(void)
{
return E_IOOK;
}
char * RPGAPI2 CEncryptDESHashModule::Query(void)
{
return "DES: BO2K DES Hash Manipulation";
}
void * RPGAPI2 CEncryptDESHashModule::Startup(void)
{
DESHASH_DATA *data;
data=(DESHASH_DATA *)dMalloc(sizeof(DESHASH_DATA));
if(data==NULL)
return NULL;
return data;
}
int RPGAPI2 CEncryptDESHashModule::Shutdown(void *pInternal)
{
DESHASH_DATA *data=(DESHASH_DATA *)pInternal;
dFree(data);
return E_IOOK;
}
int RPGAPI2 CEncryptDESHashModule::SetEncryptKey(void *pInternal, char *svKey)
{
return E_IOOK;
}
int RPGAPI2 CEncryptDESHashModule::SetDecryptKey(void *pInternal, char *svKey)
{
DESHASH_DATA *data=(DESHASH_DATA *)pInternal;
BYTE key[8];
des_str_to_key((BYTE *)svKey,key);
des_setkey(key,data->kn);
return E_IOOK;
}
char * RPGAPI2 CEncryptDESHashModule::GetEncryptKey(void *pInternal)
{
return NULL;
}
char * RPGAPI2 CEncryptDESHashModule::GetDecryptKey(void *pInternal)
{
return NULL;
}
BYTE * RPGAPI2 CEncryptDESHashModule::Encrypt(void *pInternal, BYTE *pBuffer,int nBufLen,int *pnOutBufLen)
{
*pnOutBufLen=0;
return NULL;
}
BYTE * RPGAPI2 CEncryptDESHashModule::Decrypt(void *pInternal, BYTE *pBuffer,int nBufLen,int *pnOutBufLen)
{
DESHASH_DATA *data=(DESHASH_DATA *)pInternal;
BYTE *buf;
int nOutBufLen,i;
if(nBufLen&7) nOutBufLen=(nBufLen&~7)+8;
else nOutBufLen=nBufLen;
buf=(BYTE *)dMalloc(nOutBufLen);
if(buf==NULL)
return NULL;
dMemset(buf,0,nOutBufLen);
dMemcpy(buf,pBuffer,nBufLen);
for(i=0;i<nOutBufLen;i+=8)
{
des_dedes((BYTE *)buf+i,data->kn);
}
*pnOutBufLen=nOutBufLen;
return buf;
}
int RPGAPI2 CEncryptDESHashModule::CreateNewKeys(void *pInternal)
{
return E_IOOK;
}
void RPGAPI2 CEncryptDESHashModule::Free(void *pInternal, BYTE *pBuffer)
{
DESHASH_DATA *data=(DESHASH_DATA *)pInternal;
dFree(pBuffer);
}
};//namespace CS
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -