📄 常用.txt
字号:
#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std;
typedef double TYPE;
#define Abs(x) (((x)>0)?(x):(-(x)))
#define Sgn(x) (((x)<0)?(-1):(1))
#define Max(a,b) (((a)>(b))?(a):(b))
#define Min(a,b) (((a)<(b))?(a):(b))
#define Epsilon 1e-8
#define Infinity 1e+10
#define PI acos(-1.0)//3.14159265358979323846
TYPE Deg2Rad(TYPE deg){return (deg * PI / 180.0);}
TYPE Rad2Deg(TYPE rad){return (rad * 180.0 / PI);}
TYPE Sin(TYPE deg){return sin(Deg2Rad(deg));}
TYPE Cos(TYPE deg){return cos(Deg2Rad(deg));}
TYPE ArcSin(TYPE val){return Rad2Deg(asin(val));}
TYPE ArcCos(TYPE val){return Rad2Deg(acos(val));}
TYPE Sqrt(TYPE val){return sqrt(val);}
//点
struct POINT
{
TYPE x;
TYPE y;
POINT() : x(0), y(0) {};
POINT(TYPE _x_, TYPE _y_) : x(_x_), y(_y_) {};
};
// 两个点的距离
TYPE Distance(const POINT & a, const POINT & b)
{
return Sqrt((a.x - b.x) * (a.x - b.x) + (a.y - b.y) * (a.y - b.y));
}
//线段
struct SEG
{
POINT a; //起点
POINT b; //终点
SEG() {};
SEG(POINT _a_, POINT _b_):a(_a_),b(_b_) {};
};
//直线(两点式)
struct LINE
{
POINT a;
POINT b;
LINE() {};
LINE(POINT _a_, POINT _b_) : a(_a_), b(_b_) {};
};
//直线(一般式)
struct LINE2
{
TYPE A,B,C;
LINE2() {};
LINE2(TYPE _A_, TYPE _B_, TYPE _C_) : A(_A_), B(_B_), C(_C_) {};
};
//两点式化一般式
LINE2 Line2line(const LINE & L) // y=kx+c k=y/x
{
LINE2 L2;
L2.A = L.b.y - L.a.y;
L2.B = L.a.x - L.b.x;
L2.C = L.b.x * L.a.y - L.a.x * L.b.y;
return L2;
}
// 引用返回直线 Ax + By + C =0 的系数
void Coefficient(const LINE & L, TYPE & A, TYPE & B, TYPE & C)
{
A = L.b.y - L.a.y;
B = L.a.x - L.b.x;
C = L.b.x * L.a.y - L.a.x * L.b.y;
}
void Coefficient(const POINT & p,const TYPE a,TYPE & A,TYPE & B,TYPE & C)
{
A = Cos(a);
B = Sin(a);
C = - (p.y * B + p.x * A);
}
//直线相交的交点
POINT Intersection(const LINE & A, const LINE & B)
{
TYPE A1, B1, C1; //获得一般式系数
TYPE A2, B2, C2;
Coefficient(A, A1, B1, C1);
Coefficient(B, A2, B2, C2);
POINT I(0, 0);
I.x = - (B2 * C1 - B1 * C2) / (A1 * B2 - A2 * B1);
I.y = (A2 * C1 - A1 * C2) / (A1 * B2 - A2 * B1);
return I;
}
//点到直线的距离
TYPE Ptol(const POINT p,const LINE2 L)
{
return fabs( L.A*p.x + L.B*p.y + L.C ) / Sqrt( L.A*L.A + L.B*L.B );
}
//两线段叉乘
TYPE Cross2(const SEG & p, const SEG & q)
{
return (p.b.x - p.a.x) * (q.b.y - q.a.y) - (q.b.x - q.a.x) * (p.b.y - p.a.y);
}
//有公共端点O叉乘,并判拐,若正p0->p1->p2拐向左
TYPE Cross(const POINT & a, const POINT & b, const POINT & o)
{
return (a.x - o.x) * (b.y - o.y) - (b.x - o.x) * (a.y - o.y);
}
//判等(值,点,直线)
bool IsEqual(TYPE a, TYPE b)
{
return (Abs(a - b) <Epsilon);
}
bool IsEqual(const POINT & a, const POINT & b)
{
return (IsEqual(a.x, b.x) && IsEqual(a.y, b.y));
}
bool IsEqual(const LINE & A, const LINE & B)
{
TYPE A1, B1, C1;
TYPE A2, B2, C2;
Coefficient(A, A1, B1, C1);
Coefficient(B, A2, B2, C2);
return IsEqual(A1 * B2, A2 * B1) && IsEqual(A1 * C2, A2 * C1) && IsEqual(B1 * C2, B2 * C1);
}
// 判断点是否在线段上
bool IsOnSeg(const SEG & seg, const POINT & p)
{
return (IsEqual(p, seg.a) || IsEqual(p, seg.b)) ||
(((p.x - seg.a.x) * (p.x - seg.b.x) < 0 ||
(p.y - seg.a.y) * (p.y - seg.b.y) < 0) &&
(IsEqual(Cross(seg.b, p, seg.a), 0)));
}
//判断两条线断是否相交,端点重合算相交
bool IsIntersect(const SEG & u, const SEG & v)
{
return (Cross(v.a, u.b, u.a) * Cross(u.b, v.b, u.a) >= 0) &&
(Cross(u.a, v.b, v.a) * Cross(v.b, u.b, v.a) >= 0) &&
(Max(u.a.x, u.b.x) >= Min(v.a.x, v.b.x)) &&
(Max(v.a.x, v.b.x) >= Min(u.a.x, u.b.x)) &&
(Max(u.a.y, u.b.y) >= Min(v.a.y, v.b.y)) &&
(Max(v.a.y, v.b.y) >= Min(u.a.y, u.b.y));
}
//判断线段P和直线Q是否相交,端点重合算相交
bool Isonline(const SEG & p, const LINE & q)
{
SEG p1,p2,q0;
p1.a=q.a;p1.b=p.a;
p2.a=q.a;p2.b=p.b;
q0.a=q.a;q0.b=q.b;
return (Cross2(p1,q0)*Cross2(q0,p2)>=0);
}
//判断两条线断是否平行
bool IsParallel(const LINE & A, const LINE & B)
{
TYPE A1, B1, C1;
TYPE A2, B2, C2;
Coefficient(A, A1, B1, C1);
Coefficient(B, A2, B2, C2);
//共线不算平行
/* return (A1 * B2 == A2 * B1) &&
((A1 * C2 != A2 * C1) || (B1 * C2 != B2 * C1));*/
//共线算平行
return (A1 * B2 == A2 * B1);
}
//判断两条直线是否相交
bool IsIntersect(const LINE & A, const LINE & B)
{
return !IsParallel(A, B);
}
// 矩形
struct RECT
{
POINT a; // 左下点
POINT b; // 右上点
RECT() {};
RECT(const POINT & _a_, const POINT & _b_) { a = _a_; b = _b_; }
};
//矩形化标准
RECT Stdrect(const RECT & q)
{
TYPE t;
RECT p=q;
if(p.a.x > p.b.x) swap(p.a.x , p.b.x);
if(p.a.y > p.b.y) swap(p.a.y , p.b.y);
return p;
}
//根据下标返回矩形的边
SEG Edge(const RECT & rect, int idx)
{
SEG edge;
while (idx < 0) idx += 4;
switch (idx % 4)
{
case 0: //下边
edge.a = rect.a;
edge.b = POINT(rect.b.x, rect.a.y);
break;
case 1: //右边
edge.a = POINT(rect.b.x, rect.a.y);
edge.b = rect.b;
break;
case 2: //上边
edge.a = rect.b;
edge.b = POINT(rect.a.x, rect.b.y);
break;
case 3: //左边
edge.a = POINT(rect.a.x, rect.b.y);
edge.b = rect.a;
break;
default:
break;
}
return edge;
}
//矩形的面积
TYPE Area(const RECT & rect)
{
return (rect.b.x - rect.a.x) * (rect.b.y - rect.a.y);
}
//两个矩形的公共面积
TYPE CommonArea(const RECT & A, const RECT & B)
{
TYPE area = 0.0;
POINT LL(Max(A.a.x, B.a.x), Max(A.a.y, B.a.y));
POINT UR(Min(A.b.x, B.b.x), Min(A.b.y, B.b.y));
if( (LL.x <= UR.x) && (LL.y <= UR.y) )
{
area = Area(RECT(LL, UR));
}
return area;
}
// 圆
struct CIRCLE
{
TYPE x;
TYPE y;
TYPE r;
CIRCLE() {}
CIRCLE(TYPE _x_, TYPE _y_, TYPE _r_) : x(_x_), y(_y_), r(_r_) {}
};
//圆心
POINT Center(const CIRCLE & circle)
{
return POINT(circle.x, circle.y);
}
//圆的面积
TYPE Area(const CIRCLE & circle)
{
return PI * circle.r * circle.r;
}
//两个圆的公共面积
TYPE CommonArea(const CIRCLE & A, const CIRCLE & B)
{
TYPE area = 0.0;
const CIRCLE & M = (A.r > B.r) ? A : B;
const CIRCLE & N = (A.r > B.r) ? B : A;
TYPE D = Distance(Center(M), Center(N));
if( (D < M.r + N.r) && (D > M.r - N.r) )
{
TYPE cosM = (M.r * M.r + D * D - N.r * N.r) / (2.0 * M.r * D);
TYPE cosN = (N.r * N.r + D * D - M.r * M.r) / (2.0 * N.r * D);
TYPE alpha = 2.0 * ArcCos(cosM);
TYPE beta = 2.0 * ArcCos(cosN);
TYPE TM = 0.5 * M.r * M.r * Sin(alpha);
TYPE TN = 0.5 * N.r * N.r * Sin(beta);
TYPE FM = (alpha / 360.0) * Area(M);
TYPE FN = (beta / 360.0) * Area(N);
area = FM + FN - TM - TN;
}
else if (D <= M.r - N.r)
{
area = Area(N);
}
return area;
}
//判断圆是否在矩形内(不允许相切)
bool IsInCircle(const CIRCLE & circle, const RECT & rect)
{
return (circle.x - circle.r > rect.a.x) &&
(circle.x + circle.r < rect.b.x) &&
(circle.y - circle.r > rect.a.y) &&
(circle.y + circle.r < rect.b.y);
}
//判断矩形是否在圆内(不允许相切)
bool IsInRect(const CIRCLE & circle, const RECT & rect)
{
POINT c,d;
c.x=rect.a.x; c.y=rect.b.y;
d.x=rect.b.x; d.y=rect.a.y;
return (Distance( Center(circle) , rect.a ) < circle.r) &&
(Distance( Center(circle) , rect.b ) < circle.r) &&
(Distance( Center(circle) , c ) < circle.r) &&
(Distance( Center(circle) , d ) < circle.r);
}
//判断矩形是否与圆相离(不允许相切)
bool Isoutside(const CIRCLE & circle, const RECT & rect)
{
POINT c,d;
c.x=rect.a.x; c.y=rect.b.y;
d.x=rect.b.x; d.y=rect.a.y;
return (Distance( Center(circle) , rect.a ) > circle.r) &&
(Distance( Center(circle) , rect.b ) > circle.r) &&
(Distance( Center(circle) , c ) > circle.r) &&
(Distance( Center(circle) , d ) > circle.r) &&
(rect.a.x > circle.x || circle.x > rect.b.x || rect.a.y > circle.y || circle.y > rect.b.y) ||
((circle.x - circle.r > rect.b.x) ||
(circle.x + circle.r < rect.a.x) ||
(circle.y - circle.r > rect.b.y) ||
(circle.y + circle.r < rect.a.y));
}
//三角形
struct TRIANGLE
{
POINT a;
POINT b;
POINT c;
TRIANGLE() {};
TRIANGLE(const POINT & _a_, const POINT & _b_, const POINT & _c_)
{
a = _a_;
b = _b_;
c = _c_;
}
};
//三角形标准化
TRIANGLE StdTRIANGLE(TYPE len1, TYPE len2, TYPE len3) //把3边长转化成三角形
{
POINT a,b,c; //已知边长后将其转化成坐标三角形
a.x = a.y = 0.0;
b.x = len1;
b.y = 0.0;
c.x = ( len2 * len2 - len3 * len3 + len1 * len1 )/len1/2.0;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -