📄 testa_pbar4.out
字号:
< M A T L A B >
Copyright 1984-2002 The MathWorks, Inc.
Version 6.5.0.180913a Release 13
Jun 18 2002
Using Toolbox Path Cache. Type "help toolbox_path_cache" for more info.
To get started, type one of these: helpwin, helpdesk, or demo.
For product information, visit www.mathworks.com.
*********************************************************************
* FEMjr v 2.0 - Finite Element Method junior - An FEM framework *
*********************************************************************
Enter name of input data file:
inputfile =
testa_pbar4.dat
<<<<---- Data File Echo ---->>>>
TITLE - Four bars in series; applied loads and displ's. Same as testa but using equivalent bars.
NODES - # of nodes: 13; # of dimensions: 1
# ID x y z
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 1.3333
7 7 1.6667
8 8 2.3333
9 9 2.6667
10 10 3.3333
11 11 3.6667
12 12 4.3333
13 13 4.6667
ELEMENTS - # of elements: 4
# ID elemType propID connectivity
13 1 pBar4 1 1 6 7 2
13 2 pBar4 2 2 8 9 3
13 3 pBar4 3 3 10 11 4
13 4 pBar4 4 4 12 13 5
PROPERTIES - # of properties: 4
# ID propType properties
1 1 MatpBar 25 1 0 0
2 2 MatpBar 20 1 0 0
3 3 MatpBar 40 1 0 0
4 4 MatpBar 10 1 0 0
CONSTRAINTS - # of constraints: 2
# nodeID dof value
1 2 1 0.2
2 5 1 0
LOADS - # of loads: 3
# nodeID dof value
1 1 1 2
2 3 1 -3
3 4 1 -1
ke =
92.5000 -118.1250 33.7500 -8.1250
-118.1250 270.0000 -185.6250 33.7500
33.7500 -185.6250 270.0000 -118.1250
-8.1250 33.7500 -118.1250 92.5000
fe =
0
0
0
0
ke =
74.0000 -94.5000 27.0000 -6.5000
-94.5000 216.0000 -148.5000 27.0000
27.0000 -148.5000 216.0000 -94.5000
-6.5000 27.0000 -94.5000 74.0000
fe =
0
0
0
0
ke =
148.0000 -189.0000 54.0000 -13.0000
-189.0000 432.0000 -297.0000 54.0000
54.0000 -297.0000 432.0000 -189.0000
-13.0000 54.0000 -189.0000 148.0000
fe =
0
0
0
0
ke =
37.0000 -47.2500 13.5000 -3.2500
-47.2500 108.0000 -74.2500 13.5000
13.5000 -74.2500 108.0000 -47.2500
-3.2500 13.5000 -47.2500 37.0000
fe =
0
0
0
0
Stiffness Matrix and Load Vector after assembly
kglobal =
Columns 1 through 7
92.5000 -8.1250 0 0 0 -118.1250 33.7500
-8.1250 166.5000 -6.5000 0 0 33.7500 -118.1250
0 -6.5000 222.0000 -13.0000 0 0 0
0 0 -13.0000 185.0000 -3.2500 0 0
0 0 0 -3.2500 37.0000 0 0
-118.1250 33.7500 0 0 0 270.0000 -185.6250
33.7500 -118.1250 0 0 0 -185.6250 270.0000
0 -94.5000 27.0000 0 0 0 0
0 27.0000 -94.5000 0 0 0 0
0 0 -189.0000 54.0000 0 0 0
0 0 54.0000 -189.0000 0 0 0
0 0 0 -47.2500 13.5000 0 0
0 0 0 13.5000 -47.2500 0 0
Columns 8 through 13
0 0 0 0 0 0
-94.5000 27.0000 0 0 0 0
27.0000 -94.5000 -189.0000 54.0000 0 0
0 0 54.0000 -189.0000 -47.2500 13.5000
0 0 0 0 13.5000 -47.2500
0 0 0 0 0 0
0 0 0 0 0 0
216.0000 -148.5000 0 0 0 0
-148.5000 216.0000 0 0 0 0
0 0 432.0000 -297.0000 0 0
0 0 -297.0000 432.0000 0 0
0 0 0 0 108.0000 -74.2500
0 0 0 0 -74.2500 108.0000
load_vector =
0
0
0
0
0
0
0
0
0
0
0
0
0
Load Vector after assembly of point loads
load_vector =
2
0
-3
-1
0
0
0
0
0
0
0
0
0
Constrained Stiffness Matrix and Load Vector
Stiffness and force terms only printed for small problems
<<<<---- Solution Results ---->>>>
SOLUTION VECTOR
dof# value
1 0.28
2 0.2
3 0.0071429
4 -0.014286
5 0
6 0.25333
7 0.22667
8 0.13571
9 0.071429
10 -8.5045e-17
11 -0.0071429
12 -0.0095238
13 -0.0047619
Strain Energy (assume homogeneous displacement BCs) = 6.750714
ELEMENTAL POSTPROCESSING
ID f_i Sxx(end nodes) energy
1 2 6.22e-15 3.55e-15 -2 -2 -2 0.08
stress_nd =
-2.0000 -2.0000 -2.0000 -2.0000
ID f_i Sxx(end nodes) energy
2 3.86 -6.44e-15 9.99e-16 -3.86 -3.86 -3.86 0.372
stress_nd =
-3.8571 -3.8571 -3.8571 -3.8571
ID f_i Sxx(end nodes) energy
3 0.857 -5.55e-16 0 -0.857 -0.857 -0.857 0.00918
stress_nd =
-0.8571 -0.8571 -0.8571 -0.8571
ID f_i Sxx(end nodes) energy
4 -0.143 1.11e-16 0 0.143 0.143 0.143 0.00102
stress_nd =
0.1429 0.1429 0.1429 0.1429
Strain Energy = 0.462143
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -