📄 cneuralnet.cpp
字号:
#include "CNeuralNet.h"
//*************************** methods for Neuron **********************
//
//---------------------------------------------------------------------
SNeuron::SNeuron(int NumInputs): m_NumInputs(NumInputs+1)
{
//we need an additional weight for the bias hence the +1
for (int i=0; i<NumInputs+1; ++i)
{
//set up the weights with an initial random value
m_vecWeight.push_back(RandomClamped());
}
}
//************************ methods for NeuronLayer **********************
//-----------------------------------------------------------------------
// ctor creates a layer of neurons of the required size by calling the
// SNeuron ctor the rqd number of times
//-----------------------------------------------------------------------
SNeuronLayer::SNeuronLayer(int NumNeurons,
int NumInputsPerNeuron): m_NumNeurons(NumNeurons)
{
for (int i=0; i<NumNeurons; ++i)
m_vecNeurons.push_back(SNeuron(NumInputsPerNeuron));
}
//************************ methods forCNeuralNet ************************
//------------------------------default ctor ----------------------------
//
// creates a ANN based on the default values in params.ini
//-----------------------------------------------------------------------
CNeuralNet::CNeuralNet()
{
m_NumInputs = CParams::iNumInputs;
m_NumOutputs = CParams::iNumOutputs;
m_NumHiddenLayers = CParams::iNumHidden;
m_NeuronsPerHiddenLyr = CParams::iNeuronsPerHiddenLayer;
CreateNet();
}
//------------------------------createNet()------------------------------
//
// this method builds the ANN. The weights are all initially set to
// random values -1 < w < 1
//------------------------------------------------------------------------
void CNeuralNet::CreateNet()
{
//create the layers of the network
if (m_NumHiddenLayers > 0)
{
//create first hidden layer
m_vecLayers.push_back(SNeuronLayer(m_NeuronsPerHiddenLyr, m_NumInputs));
for (int i=0; i<m_NumHiddenLayers-1; ++i)
{
m_vecLayers.push_back(SNeuronLayer(m_NeuronsPerHiddenLyr,
m_NeuronsPerHiddenLyr));
}
//create output layer
m_vecLayers.push_back(SNeuronLayer(m_NumOutputs, m_NeuronsPerHiddenLyr));
}
else
{
//create output layer
m_vecLayers.push_back(SNeuronLayer(m_NumOutputs, m_NumInputs));
}
}
//---------------------------------GetWeights-----------------------------
//
// returns a vector containing the weights
//
//------------------------------------------------------------------------
vector<double> CNeuralNet::GetWeights() const
{
//this will hold the weights
vector<double> weights;
//for each layer
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
//for each neuron
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
//for each weight
for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)
{
weights.push_back(m_vecLayers[i].m_vecNeurons[j].m_vecWeight[k]);
}
}
}
return weights;
}
//-----------------------------------PutWeights---------------------------
//
// given a vector of doubles this function replaces the weights in the NN
// with the new values
//
//------------------------------------------------------------------------
void CNeuralNet::PutWeights(vector<double> &weights)
{
int cWeight = 0;
//for each layer
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
//for each neuron
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
//for each weight
for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)
{
m_vecLayers[i].m_vecNeurons[j].m_vecWeight[k] = weights[cWeight++];
}
}
}
return;
}
//---------------------------------GetNumberOfWeights---------------------
//
// returns the total number of weights needed for the net
//
//------------------------------------------------------------------------
int CNeuralNet::GetNumberOfWeights() const
{
int weights = 0;
//for each layer
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
//for each neuron
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
//for each weight
for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)
weights++;
}
}
return weights;
}
//-------------------------------Update-----------------------------------
//
// given an input vector this function calculates the output vector
//
//------------------------------------------------------------------------
vector<double> CNeuralNet::Update(vector<double> &inputs)
{
//stores the resultant outputs from each layer
vector<double> outputs;
int cWeight = 0;
//first check that we have the correct amount of inputs
if (inputs.size() != m_NumInputs)
{
//just return an empty vector if incorrect.
return outputs;
}
//For each layer....
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
if ( i > 0 )
{
inputs = outputs;
}
outputs.clear();
cWeight = 0;
//for each neuron sum the (inputs * corresponding weights).Throw
//the total at our sigmoid function to get the output.
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
double netinput = 0;
int NumInputs = m_vecLayers[i].m_vecNeurons[j].m_NumInputs;
//for each weight
for (int k=0; k<NumInputs - 1; ++k)
{
//sum the weights x inputs
netinput += m_vecLayers[i].m_vecNeurons[j].m_vecWeight[k] *
inputs[cWeight++];
}
//add in the bias
netinput += m_vecLayers[i].m_vecNeurons[j].m_vecWeight[NumInputs-1] *
CParams::dBias;
//we can store the outputs from each layer as we generate them.
//The combined activation is first filtered through the sigmoid
//function
outputs.push_back(Sigmoid(netinput,
CParams::dActivationResponse));
cWeight = 0;
}
}
return outputs;
}
//-------------------------------Sigmoid function-------------------------
//
//------------------------------------------------------------------------
double CNeuralNet::Sigmoid(double netinput, double response)
{
return ( 1 / ( 1 + exp(-netinput / response)));
}
//--------------------------- CalculateSplitPoints -----------------------
//
// this method calculates all points in the vector of weights which
// represent the start and end points of individual neurons
//------------------------------------------------------------------------
vector<int> CNeuralNet::CalculateSplitPoints() const
{
vector<int> SplitPoints;
int WeightCounter = 0;
//for each layer
for (int i=0; i<m_NumHiddenLayers + 1; ++i)
{
//for each neuron
for (int j=0; j<m_vecLayers[i].m_NumNeurons; ++j)
{
//for each weight
for (int k=0; k<m_vecLayers[i].m_vecNeurons[j].m_NumInputs; ++k)
{
++WeightCounter;
}
SplitPoints.push_back(WeightCounter - 1);
}
}
return SplitPoints;
}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -