📄 load_image.m.svn-base
字号:
if isfield(options, 'alpha')
alpha = options.alpha;
else
alpha = 1;
end
M = gen_noisy_image(n,alpha);
case 'gaussiannoise'
% generate an image of filtered noise with gaussian
if isfield(options, 'sigma')
sigma = options.sigma;
else
sigma = 10;
end
M = randn(n);
m = 51;
h = compute_gaussian_filter([m m],sigma/(4*n),[n n]);
M = perform_convolution(M,h);
return;
case {'bwhorizontal','bwvertical','bwcircle'}
[Y,X] = meshgrid(0:n-1,0:n-1);
if strcmp(type, 'bwhorizontal')
d = X;
elseif strcmp(type, 'bwvertical')
d = Y;
elseif strcmp(type, 'bwcircle')
d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 );
end
if isfield(options, 'stripe_width')
stripe_width = options.stripe_width;
else
stripe_width = 5;
end
if isfield(options, 'black_prop')
black_prop = options.black_prop;
else
black_prop = 0.5;
end
M = double( mod( d/(2*stripe_width),1 )>=black_prop );
case 'parabola'
% curvature
if isfield(options, 'c')
c = options.c;
else
c = 0.1;
end
% angle
if isfield(options, 'theta');
theta = options.theta;
else
theta = pi/sqrt(2);
end
x = -0.5:1/(n-1):0.5;
[Y,X] = meshgrid(x,x);
Xs = X*cos(theta) + Y*sin(theta);
Y =-X*sin(theta) + Y*cos(theta); X = Xs;
M = Y>c*X.^2;
case 'sin'
[Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1);
M = Y >= 0.6*cos(pi*X);
M = double(M);
case 'circ_oscil'
x = linspace(-1,1,n);
[Y,X] = meshgrid(x,x);
R = sqrt(X.^2+Y.^2);
M = cos(R.^3*50);
case 'phantom'
M = phantom(n);
case 'periodic_bumps'
if isfield(options, 'nbr_periods')
nbr_periods = options.nbr_periods;
else
nbr_periods = 8;
end
if isfield(options, 'theta')
theta = options.theta;
else
theta = 1/sqrt(2);
end
if isfield(options, 'skew')
skew = options.skew;
else
skew = 1/sqrt(2);
end
A = [cos(theta), -sin(theta); sin(theta), cos(theta)];
B = [1 skew; 0 1];
T = B*A;
x = (0:n-1)*2*pi*nbr_periods/(n-1);
[Y,X] = meshgrid(x,x);
pos = [X(:)'; Y(:)'];
pos = T*pos;
X = reshape(pos(1,:), n,n);
Y = reshape(pos(2,:), n,n);
M = cos(X).*sin(Y);
case 'noise'
if isfield(options, 'sigma')
sigma = options.sigma;
else
sigma = 1;
end
M = randn(n);
otherwise
ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'};
for i=1:length(ext)
name = [type '.' ext{i}];
if( exist(name) )
M = imread( name );
M = double(M);
if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2
M = image_resize(M,n,n);
end
return;
end
end
error( ['Image ' type ' does not exists.'] );
end
M = double(M);
if sigma>0
h = compute_gaussian_filter( [9 9], sigma/(2*n), [n n]);
M = perform_convolution(M,h);
end
M = rescale(M) * 256;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = create_letter(a, r, n)
c = 0.2;
p1 = [c;c];
p2 = [c; 1-c];
p3 = [1-c; 1-c];
p4 = [1-c; c];
p4 = [1-c; c];
pc = [0.5;0.5];
pu = [0.5; c];
switch a
case 'x'
point_list = { [p1 p3] [p2 p4] };
case 'z'
point_list = { [p2 p3 p1 p4] };
case 'v'
point_list = { [p2 pu p3] };
case 'y'
point_list = { [p2 pc pu] [pc p3] };
end
% fit image
for i=1:length(point_list)
a = point_list{i}(2:-1:1,:);
a(1,:) = 1-a(1,:);
point_list{i} = round( a*(n-1)+1 );
end
M = draw_polygons(zeros(n),r,point_list);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sk = draw_polygons(mask,r,point_list)
sk = mask*0;
for i=1:length(point_list)
pl = point_list{i};
for k=2:length(pl)
sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r);
end
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sk = draw_line(sk,x1,y1,x2,y2,r)
n = size(sk,1);
[Y,X] = meshgrid(1:n,1:n);
q = 100;
t = linspace(0,1,q);
x = x1*t+x2*(1-t); y = y1*t+y2*(1-t);
if r==0
x = round( x ); y = round( y );
sk( x+(y-1)*n ) = 1;
else
for k=1:q
I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 );
sk(I) = 1;
end
end
function M = gen_noisy_image(n,alpha)
% gen_noisy_image - generate a noisy cloud-like image.
%
% M = gen_noisy_image(n,alpha);
%
% generate an image M whose Fourier spectrum amplitude is
% |M^(omega)| = 1/f^{omega}
%
% Copyright (c) 2004 Gabriel Peyr?
if nargin<1
n = 128;
end
if nargin<2
alpha = 1.5;
end
if mod(n(1),2)==0
x = -n/2:n/2-1;
else
x = -(n-1)/2:(n-1)/2;
end
[Y,X] = meshgrid(x,x);
d = sqrt(X.^2 + Y.^2) + 0.1;
f = rand(n)*2*pi;
M = (d.^(-alpha)) .* exp(f*1i);
% M = real(ifft2(fftshift(M)));
M = ifftshift(M);
M = real( ifft2(M) );
function y = gen_signal_2d(n,alpha)
% gen_signal_2d - generate a 2D C^\alpha signal of length n x n.
% gen_signal_2d(n,alpha) generate a 2D signal C^alpha.
%
% The signal is scale in [0,1].
%
% Copyright (c) 2003 Gabriel Peyr?
% new new method
[Y,X] = meshgrid(0:n-1, 0:n-1);
A = X+Y+1;
B = X-Y+n+1;
a = gen_signal(2*n+1, alpha);
b = gen_signal(2*n+1, alpha);
y = a(A).*b(B);
% M = a(1:n)*b(1:n)';
return;
% new method
h = (-n/2+1):(n/2); h(n/2)=1;
[X,Y] = meshgrid(h,h);
h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2);
h = h .* exp( 2i*pi*rand(n,n) );
h = fftshift(h);
y = real( ifft2(h) );
m1 = min(min(y));
m2 = max(max(y));
y = (y-m1)/(m2-m1);
return;
%% old code
y = rand(n,n);
y = y - mean(mean(y));
for i=1:alpha
y = cumsum(cumsum(y)')';
y = y - mean(mean(y));
end
m1 = min(min(y));
m2 = max(max(y));
y = (y-m1)/(m2-m1);
function newimg = image_resize(img,p1,q1,r1)
% image_resize - resize an image using bicubic interpolation
%
% newimg = image_resize(img,nx,ny,nz);
% or
% newimg = image_resize(img,newsize);
%
% Works for 2D, 2D 2 or 3 channels, 3D images.
%
% Copyright (c) 2004 Gabriel Peyr?
if nargin==2
% size specified as an array
q1 = p1(2);
if length(p1)>2
r1 = p1(3);
else
r1 = size(img,3);
end
p1 = p1(1);
end
if nargin<4
r1 = size(img,3);
end
if ndims(img)<2 || ndims(img)>3
error('Works only for grayscale or color images');
end
if ndims(img)==3 && size(img,3)<4
% RVB image
newimg = zeros(p1,q1, size(img,3));
for m=1:size(img,3)
newimg(:,:,m) = image_resize(img(:,:,m), p1, q1);
end
return;
elseif ndims(img)==3
p = size(img,1);
q = size(img,2);
r = size(img,3);
[Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1) );
[YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) );
newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic');
return;
end
p = size(img,1);
q = size(img,2);
[Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) );
[YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) );
newimg = interp2( Y,X, img, YI,XI ,'cubic');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = draw_rectangle(r,n)
x = linspace(0,1,n);
[Y,X] = meshgrid(x,x);
M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -