⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 load_image.m.svn-base

📁 fast marching method
💻 SVN-BASE
📖 第 1 页 / 共 2 页
字号:
        if isfield(options, 'alpha')
            alpha = options.alpha;
        else
            alpha = 1;
        end
        M = gen_noisy_image(n,alpha);
        
        
    case 'gaussiannoise'
        % generate an image of filtered noise with gaussian
        if isfield(options, 'sigma')
            sigma = options.sigma;
        else
            sigma = 10;
        end
        M = randn(n);
        m = 51;
        h = compute_gaussian_filter([m m],sigma/(4*n),[n n]);
        M = perform_convolution(M,h);
        return;
    
    case {'bwhorizontal','bwvertical','bwcircle'}
        
        [Y,X] = meshgrid(0:n-1,0:n-1);
        if strcmp(type, 'bwhorizontal')
            d = X;
        elseif strcmp(type, 'bwvertical')
            d = Y;
        elseif strcmp(type, 'bwcircle')
            d = sqrt( (X-(n-1)/2).^2 + (Y-(n-1)/2).^2 );
        end
        if isfield(options, 'stripe_width')
            stripe_width = options.stripe_width;
        else
            stripe_width = 5;
        end
        if isfield(options, 'black_prop')
            black_prop = options.black_prop;
        else
            black_prop = 0.5;
        end
        M = double( mod( d/(2*stripe_width),1 )>=black_prop );
        
    case 'parabola'
        
        % curvature
        if isfield(options, 'c')
            c = options.c;
        else
            c = 0.1;
        end
        % angle
        if isfield(options, 'theta');
            theta = options.theta;
        else
            theta = pi/sqrt(2);
        end
        x = -0.5:1/(n-1):0.5;
        [Y,X] = meshgrid(x,x);
        Xs = X*cos(theta) + Y*sin(theta);
        Y =-X*sin(theta) + Y*cos(theta); X = Xs;
        M = Y>c*X.^2; 
        
    case 'sin'
        
        [Y,X] = meshgrid(-1:2/(n-1):1, -1:2/(n-1):1);
        M = Y >= 0.6*cos(pi*X);
        M = double(M);
        
    case 'circ_oscil'

        x = linspace(-1,1,n);
        [Y,X] = meshgrid(x,x);
        R = sqrt(X.^2+Y.^2);
        M = cos(R.^3*50);

    case 'phantom'
        
        M = phantom(n);
        
    case 'periodic_bumps'
        
        if isfield(options, 'nbr_periods')
            nbr_periods = options.nbr_periods;
        else
            nbr_periods = 8;
        end
        if isfield(options, 'theta')
            theta = options.theta;
        else
            theta = 1/sqrt(2);
        end
        if isfield(options, 'skew')
            skew = options.skew;
        else
            skew = 1/sqrt(2);
        end
        
        A = [cos(theta), -sin(theta); sin(theta), cos(theta)];
        B = [1 skew; 0 1];
        T = B*A;
        x = (0:n-1)*2*pi*nbr_periods/(n-1);
        [Y,X] = meshgrid(x,x);
        pos = [X(:)'; Y(:)'];
        pos = T*pos;
        X = reshape(pos(1,:), n,n);
        Y = reshape(pos(2,:), n,n);
        M = cos(X).*sin(Y);      
        
    case 'noise'
        if isfield(options, 'sigma')
            sigma = options.sigma;
        else
            sigma = 1;
        end
        M = randn(n);
        
    otherwise
        ext = {'gif', 'png', 'jpg', 'bmp', 'tiff', 'pgm', 'ppm'};
        for i=1:length(ext)
            name = [type '.' ext{i}];
            if( exist(name) )
                M = imread( name );
                M = double(M);
                if not(isempty(n)) && (n~=size(M, 1) || n~=size(M, 2)) && nargin>=2
                    M = image_resize(M,n,n);
                end
                return;
            end
        end
        error( ['Image ' type ' does not exists.'] );
end

M = double(M);

if sigma>0
    h = compute_gaussian_filter( [9 9], sigma/(2*n), [n n]);
    M = perform_convolution(M,h);
end

M = rescale(M) * 256;



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = create_letter(a, r, n)

c = 0.2;
p1 = [c;c];
p2 = [c; 1-c];
p3 = [1-c; 1-c];
p4 = [1-c; c];
p4 = [1-c; c];
pc = [0.5;0.5];
pu = [0.5; c];

switch a
    case 'x'
        point_list = { [p1 p3] [p2 p4] };
    case 'z'
        point_list = { [p2 p3 p1 p4] };
    case 'v'
        point_list = { [p2 pu p3] };
    case 'y'
        point_list = { [p2 pc pu] [pc p3] };
        
        
end
% fit image
for i=1:length(point_list)
    a = point_list{i}(2:-1:1,:);
    a(1,:) = 1-a(1,:);
    point_list{i} = round( a*(n-1)+1 );
end
M = draw_polygons(zeros(n),r,point_list);



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sk = draw_polygons(mask,r,point_list)

sk = mask*0;
for i=1:length(point_list)
    pl = point_list{i};
    for k=2:length(pl)
        sk = draw_line(sk,pl(1,k-1),pl(2,k-1),pl(1,k),pl(2,k),r);
    end
end



%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function sk = draw_line(sk,x1,y1,x2,y2,r)


n = size(sk,1);
[Y,X] = meshgrid(1:n,1:n);
q = 100;
t = linspace(0,1,q);
x = x1*t+x2*(1-t); y = y1*t+y2*(1-t);
if r==0
    x = round( x ); y = round( y );
    sk( x+(y-1)*n ) = 1;
else
    for k=1:q
        I = find((X-x(k)).^2 + (Y-y(k)).^2 <= r^2 );
        sk(I) = 1;
    end
end



function M = gen_noisy_image(n,alpha)

% gen_noisy_image - generate a noisy cloud-like image.
%
%   M = gen_noisy_image(n,alpha);
%
% generate an image M whose Fourier spectrum amplitude is 
%   |M^(omega)| = 1/f^{omega}
%
%   Copyright (c) 2004 Gabriel Peyr?

if nargin<1
    n = 128;
end
if nargin<2
    alpha = 1.5;
end

if mod(n(1),2)==0
    x = -n/2:n/2-1;
else
    x = -(n-1)/2:(n-1)/2;
end

[Y,X] = meshgrid(x,x);
d = sqrt(X.^2 + Y.^2) + 0.1;
f = rand(n)*2*pi;

M = (d.^(-alpha)) .* exp(f*1i);
% M = real(ifft2(fftshift(M)));

M = ifftshift(M);
M = real( ifft2(M) );


function y = gen_signal_2d(n,alpha)

% gen_signal_2d -  generate a 2D C^\alpha signal of length n x n.
%   gen_signal_2d(n,alpha) generate a 2D signal C^alpha. 
%
%   The signal is scale in [0,1].
%   
%   Copyright (c) 2003 Gabriel Peyr?



% new new method

[Y,X] = meshgrid(0:n-1, 0:n-1);

A = X+Y+1;
B = X-Y+n+1;

a = gen_signal(2*n+1, alpha);
b = gen_signal(2*n+1, alpha);
y = a(A).*b(B);
% M = a(1:n)*b(1:n)';

return;


% new method
h = (-n/2+1):(n/2); h(n/2)=1;
[X,Y] = meshgrid(h,h);
h = sqrt(X.^2+Y.^2+1).^(-alpha-1/2);
h = h .* exp( 2i*pi*rand(n,n) );
h = fftshift(h);
y = real( ifft2(h) );

m1 = min(min(y));
m2 = max(max(y));
y = (y-m1)/(m2-m1);

return;

%% old code

y = rand(n,n); 
y = y - mean(mean(y));
for i=1:alpha
    y = cumsum(cumsum(y)')';
    y = y - mean(mean(y));
end
m1 = min(min(y));
m2 = max(max(y));
y = (y-m1)/(m2-m1);



function newimg = image_resize(img,p1,q1,r1)

% image_resize - resize an image using bicubic interpolation
%
%   newimg = image_resize(img,nx,ny,nz);
% or
%   newimg = image_resize(img,newsize);
%
%   Works for 2D, 2D 2 or 3 channels, 3D images.
%
%   Copyright (c) 2004 Gabriel Peyr?

if nargin==2
    % size specified as an array
    q1 = p1(2);
    if length(p1)>2
        r1 = p1(3);
    else
        r1 = size(img,3);
    end
    p1 = p1(1);        
end

if nargin<4
    r1 = size(img,3);
end

if ndims(img)<2 || ndims(img)>3
    error('Works only for grayscale or color images');
end

if ndims(img)==3 && size(img,3)<4
    % RVB image
    newimg = zeros(p1,q1, size(img,3));
    for m=1:size(img,3)
        newimg(:,:,m) = image_resize(img(:,:,m), p1, q1);
    end
    return;
elseif ndims(img)==3
    p = size(img,1);
    q = size(img,2);
    r = size(img,3);
    [Y,X,Z] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1), (0:r-1)/(r-1)  );
    [YI,XI,ZI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1), (0:r1-1)/(r1-1) );
    newimg = interp3( Y,X,Z, img, YI,XI,ZI ,'cubic');
    return;
end

p = size(img,1);
q = size(img,2);
[Y,X] = meshgrid( (0:q-1)/(q-1), (0:p-1)/(p-1) );
[YI,XI] = meshgrid( (0:q1-1)/(q1-1), (0:p1-1)/(p1-1) );
newimg = interp2( Y,X, img, YI,XI ,'cubic');


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = draw_rectangle(r,n)

x = linspace(0,1,n);
[Y,X] = meshgrid(x,x);
M = double( (X>=r(1)) & (X<=r(3)) & (Y>=r(2)) & (Y<=r(4)) ) ;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -