⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 tnt_array3d.h.svn-base

📁 fast marching method
💻 SVN-BASE
字号:
/*
*
* Template Numerical Toolkit (TNT): Three-dimensional numerical array
*
* Mathematical and Computational Sciences Division
* National Institute of Technology,
* Gaithersburg, MD USA
*
*
* This software was developed at the National Institute of Standards and
* Technology (NIST) by employees of the Federal Government in the course
* of their official duties. Pursuant to title 17 Section 105 of the
* United States Code, this software is not subject to copyright protection
* and is in the public domain. NIST assumes no responsibility whatsoever for
* its use by other parties, and makes no guarantees, expressed or implied,
* about its quality, reliability, or any other characteristic.
*
*/



#ifndef TNT_ARRAY3D_H
#define TNT_ARRAY3D_H

#include <cstdlib>
#include <iostream>
#ifdef TNT_BOUNDS_CHECK
#include <assert.h>
#endif

namespace TNT
{

/**
	Tempplated three-dimensional, numerical array which
	looks like a conventional C multiarray. 
	Storage corresponds to conventional C ordering.
	That is the right-most dimension has contiguous
	elements.  Indexing is via the A[i][j][k] notation. 
	
	<p>
	Array assignment is by reference (i.e. shallow assignment).
	That is, B=A implies that the A and B point to the
	same array, so modifications to the elements of A
	will be reflected in B. If an independent copy
	is required, then B = A.copy() can be used.  Note
	that this facilitates returning arrays from functions
	without relying on compiler optimizations to eliminate
	extensive data copying.

	<p>
	The indexing and layout of this array object makes
	it compatible with C and C++ algorithms that utilize
	the familiar C[i][j][k] notation.  This includes numerous
	textbooks, such as Numercial Recipes, and various
	public domain codes.

	<p>
	This class employs its own garbage collection via
	the use of reference counts.  That is, whenever
	an internal array storage no longer has any references
	to it, it is destoryed.
*/
template <class T>
class Array3D 
{


  private:
    T*** v_;                  
	int m_;
    int n_;
	int k_;
    int *ref_count_;

	void initialize_(T* data, int m, int n, int k);
    void copy_(T* p, const T*  q, int len) const;
    void set_(const T& val);
    void destroy_();
	inline const T* begin_() const;
	inline T* begin_();

  public:

    typedef         T   value_type;

	       Array3D();
	       Array3D(int m, int n, int k);
	       Array3D(int m, int n, int k,  T *a);
	       Array3D(int m, int n, int k, const T &a);
    inline Array3D(const Array3D &A);
	inline Array3D & operator=(const T &a);
	inline Array3D & operator=(const Array3D &A);
	inline Array3D & ref(const Array3D &A);
	       Array3D copy() const;
		   Array3D & inject(const Array3D & A);
	inline T** operator[](int i);
	inline const T* const * operator[](int i) const;
	inline int dim1() const;
	inline int dim2() const;
	inline int dim3() const;
	inline int ref_count() const;
               ~Array3D();


};


/**
	Copy constructor. Array data is NOT copied, but shared.
	Thus, in Array3D B(A), subsequent changes to A will
	be reflected in B.  For an indepent copy of A, use
	Array3D B(A.copy()), or B = A.copy(), instead.
*/
template <class T>
Array3D<T>::Array3D(const Array3D<T> &A) : v_(A.v_), m_(A.m_), 
	n_(A.n_), k_(A.k_), ref_count_(A.ref_count_)
{
	(*ref_count_)++;
}



/**
	Create a new (m x n x k) array, WIHOUT initializing array elements.
	To create an initialized array of constants, see Array3D(m,n,k, value).

	<p>
	This version avoids the O(m*n*k) initialization overhead and
	is used just before manual assignment.

	@param m the first dimension of the new matrix.
	@param n the second dimension of the new matrix.
	@param k the third dimension of the new matrix.
*/
template <class T>
Array3D<T>::Array3D(int m, int n, int k) : v_(0), m_(m), n_(n), k_(k), ref_count_(0)
{
	initialize_(new T[m*n*k], m,n,k);
	ref_count_ = new int;
	*ref_count_ = 1;
}



/**
	Create a new (m x n x k) array,  initializing array elements to
	constant specified by argument.  Most often used to
	create an array of zeros, as in A(m, n, k, 0.0).

	@param m the first dimension of the new matrix.
	@param n the second dimension of the new matrix.
	@param k the third dimension of the new matrix.
	@param val the constant value to set all elements of the new array to.
*/
template <class T>
Array3D<T>::Array3D(int m, int n, int k, const T &val) : v_(0), m_(m), n_(n) ,
	k_(k), ref_count_(0)
{
	initialize_(new T[m*n*k], m,n,k);
	set_(val);
	ref_count_ = new int;
	*ref_count_ = 1;

}

/**

	Create a new (m x n x k) array,  as a view of an existing one-dimensional
	array stored in <b>C order</b>, i.e. right-most dimension varying fastest.  
	(Often referred to as "row-major" ordering.)
	Note that the storage for this pre-existing array will
	never be garbage collected by the Array3D class.

	@param m the first dimension of the new matrix.
	@param n the second dimension of the new matrix.
	@param k the third dimension of the new matrix.
	@param a the one dimensional C array to use as data storage for
		the array. 
*/
template <class T>
Array3D<T>::Array3D(int m, int n, int k, T *a) : v_(0), m_(m), n_(n) ,
	k_(k), ref_count_(0)
{
	initialize_(a, m, n, k);
	ref_count_ = new int;
	*ref_count_ = 2;		/* this avoids destorying original data. */

}


/**
	Used for A[i][j][k] indexing.  The first [] operator returns
	a conventional pointer which can be dereferenced using the
	same [] notation.  
	
	If TNT_BOUNDS_CHECK macro is define, the left-most index 
	is checked that it falls within the array bounds (via the
	assert() macro.) 
*/
template <class T>
inline T** Array3D<T>::operator[](int i) 
{ 
#ifdef TNT_BOUNDS_CHECK
	assert(i >= 0);
	assert(i < m_);
#endif

return v_[i]; 

}

template <class T>
inline const T* const * Array3D<T>::operator[](int i) const { return v_[i]; }

/**
	Assign all elemnts of A to a constant scalar.
*/
template <class T>
Array3D<T> & Array3D<T>::operator=(const T &a)
{
	set_(a);
	return *this;
}
/**
	Create a new of existing matrix.  Used in B = A.copy()
	or in the construction of B, e.g. Array3D B(A.copy()), 
	to create a new array that does not share data.

*/
template <class T>
Array3D<T> Array3D<T>::copy() const
{
	Array3D A(m_, n_, k_);
	copy_(A.begin_(), begin_(), m_*n_*k_);

	return A;
}


/**
	Copy the elements to from one array to another, in place.
	That is B.inject(A), both A and B must conform (i.e. have
	identical dimensions).

	This differs from B = A.copy() in that references to B
	before this assignment are also affected.  That is, if
	we have 
	<pre>
	Array3D A(m,n,k);
	Array3D C(m,n,k);
	Array3D B(C);        // elements of B and C are shared. 

</pre>
	then B.inject(A) affects both and C, while B=A.copy() creates
	a new array B which shares no data with C or A.

	@param A the array from elements will be copied
	@return an instance of the modifed array. That is, in B.inject(A),
	it returns B.  If A and B are not conformat, no modifications to 
	B are made.

*/
template <class T>
Array3D<T> & Array3D<T>::inject(const Array3D &A)
{
	if (A.m_ == m_ &&  A.n_ == n_)
		copy_(begin_(), A.begin_(), m_*n_);

	return *this;
}





/**
	Create a reference (shallow assignment) to another existing array.
	In B.ref(A), B and A shared the same data and subsequent changes
	to the array elements of one will be reflected in the other.
	<p>
	This is what operator= calls, and B=A and B.ref(A) are equivalent
	operations.

	@return The new referenced array: in B.ref(A), it returns B.
*/
template <class T>
Array3D<T> & Array3D<T>::ref(const Array3D<T> &A)
{
	if (this != &A)
	{
		(*ref_count_) --;
		if ( *ref_count_ < 1 )
		{
			destroy_();
		}

		m_ = A.m_;
		n_ = A.n_;
		k_ = A.k_;
		v_ = A.v_;
		ref_count_ = A.ref_count_;

		(*ref_count_) ++ ;
		
	}
	return *this;
}

/**
	B = A is shorthand notation for B.ref(A).
*/
template <class T>
Array3D<T> & Array3D<T>::operator=(const Array3D<T> &A)
{
	return ref(A);
}

/**
	@return the size of the first dimension of the array.
*/
template <class T>
inline int Array3D<T>::dim1() const { return m_; }

/**
	@return the size of the second dimension of the array.
*/
template <class T>
inline int Array3D<T>::dim2() const { return n_; }

/**
	@return the size of the third (right-most) dimension of the array.
*/
template <class T>
inline int Array3D<T>::dim3() const { return k_; }


/**
	@return the number of arrays that share the same storage area
	as this one.  (Must be at least one.)
*/
template <class T>
inline int Array3D<T>::ref_count() const
{
	return *ref_count_;
}

template <class T>
Array3D<T>::~Array3D()
{
	(*ref_count_) --;

	if (*ref_count_ < 1)
		destroy_();
}

/* private internal functions */

template <class T>
void Array3D<T>::initialize_( T* data, int m, int n, int k)
{

	v_ = new T**[m];
	v_[0] = new T*[m*n];
	v_[0][0] = data;


	for (int i=0; i<m; i++)
	{
		v_[i] = v_[0] + i * n;
		for (int j=0; j<n; j++)
			v_[i][j] = v_[0][0] + i * (n*k) + j * k;
	}

	m_ = m;
	n_ = n;
	k_ = k;
}

template <class T>
void Array3D<T>::set_(const T& a)
{
	T *begin = &(v_[0][0][0]);
	T *end = begin+ m_*n_*k_;

	for (T* p=begin; p<end; p++)
		*p = a;

}

template <class T>
void Array3D<T>::copy_(T* p, const T* q, int len) const
{
	T *end = p + len;
	while (p<end )
		*p++ = *q++;

}

template <class T>
void Array3D<T>::destroy_()
{

	if (v_ != 0)
	{
		delete[] (v_[0][0]);
		delete[] (v_[0]);
		delete[] (v_);
	}

	if (ref_count_ != 0)
		delete ref_count_;
}

/**
	@returns location of first element, i.e. A[0][0][0] (mutable).
*/
template <class T>
const T* Array3D<T>::begin_() const { return &(v_[0][0][0]); }

/**
	@returns location of first element, i.e. A[0][0][0] (mutable).
*/
template <class T>
T* Array3D<T>::begin_() { return &(v_[0][0][0]); }

/**
	Create a null (0x0x0) array.  
*/
template <class T>
Array3D<T>::Array3D() : v_(0), m_(0), n_(0) 
{
	ref_count_ = new int;
	*ref_count_ = 1;
}

} /* namespace TNT */

#endif
/* TNT_ARRAY3D_H */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -