📄 main copy.c
字号:
spieeprom_read(tChar,fleds,2); // the top 2 bytes spieeprom_read(bChar,fleds+2,2); // and the bottom 2 #ifdef SMOOTHSCROLL spieeprom_read(sChar,fleds+4,2); // and the scroll characters #endif // However, we do have a fancy trick of our own. If we are // smooth scrolling, then we clock out an extra line_shift // BITS, thus implementing the smooth scrolling #ifdef SMOOTHSCROLL clock_scroll(line_shift); // send 0-15 extra bits.. #else clock_scroll(0); // just send the 4 bytes #endif } // *** PORTB &= ~0x2; }// Interrupt 0 executes when the button is pressed.// QUESTION: unlike the pixel output interrupt, this one// doesn't sei(). Why?SIGNAL (SIG_INT0) { // Wait until button no longer pressed while (! (BUTTON_PIN & _BV(BUTTON))) { } if (sensor_timer.bytes.high_byte == 0xFF) { // so in this instance, we set the watchdog to reset us sensor_timer.bytes.high_byte = 0x00; // Re-enable the watchdog timer, then loop until // it fires off. WDTCSR = _BV(WDE); for (;;); } else { // We want to shut everything down. Setting sensor_timer // to the pin value will cause both the communications // loop and the regular timeout loop in the main() to // give up, which results in the device going to sleep. sensor_timer.bytes.high_byte = 0xFF; }}// Interrupt 1 executes when the hall effect sensor fires// QUESTION: unlike the pixel output interrupt, this one// doesn't sei(). Why?SIGNAL (SIG_INT1) { #if NUM_LINES > 0 uint8_t cLine; // temp var used in scroll code #endif #ifdef DYNAMIC uint8_t dCode; // temp var mostly used in dynamic code #else // also needed in this case #if NUM_LINES > 0 uint8_t dCode; #endif #endif // make sure we don't get bitten by the watchdog asm("wdr"); // *** PORTB |= 0x8; // The first issue we need to deal with when the hall-effect // sensor tells us it sees the magnet is to avoid doing any // processing if we get an interrupt too soon after the previous // interrupt. // hall_debounce is incremented by TIMER0, which fires every 3ms // or so. At the current setting of 4, this means that at least // 15ms must elapse per trigger, which translates to about 4000 // rpm. if (hall_debounce > HALL_DEBOUNCE_THRESH) { // We know the number of ms since the last hall sensor trigger // and there are 128 radial 'pixels' per sweep so divide to get // the necessary ms between the pixel interrupts // QUESTION: 128 or 256? // Then we just make TIMER1 trigger at that rate! // Reset the Timer Count Register for TIMER1 to 0, so it will // begin counting up. TCNT1 = 0; // sensor_timer contains the number of TIMER0 interrupts since // the last time we updated TIMER1. If it has a reasonable // value, then we use it to reset the TIMER1 clock. // if ((sensor_timer.bytes.low_byte < 0xFF) && (sensor_timer.bytes.low_byte > 0x03)) { if ((sensor_timer.bytes.high_byte == 0x00) || (sensor_timer.bytes.low_byte > 0x03)) { // TIMER1 works differently from TIMER0. It's a 16-bit timer // that apparently increments at the system clock rate. // // Because TIMER0 increments at 1/256 of the clock rate, and // fires the interrupt only when it overflows, sensor_timer // is incremented once ever 256*256 cycles. // // We want TIMER1 to fire off 256 times around the loop, so // we can display 256 lines of pixels. We do this by putting // sensor_timer into the high byte of TIMER1's comparator // value, and the residual of TIMER0 (what it's counted up // to since the last time sensor_timer was incremented) into // the low byte, effectively a fractional value! // // Since TIMER0 is incrementing at 1/256 of the rate of TIMER1, // this results in TIMER1 firing off 256 times per rotation, // with excellent time resolution. // // I was quite touched by the elegance of how this works out; // it may be able to handle the extreme RPMs of BrightSaber // without modification... // Set the TIMER1 comparator value. As a hack to Limor's hack, // reduce the timing a little bit so that the display doesn't // span the full 360 degrees, thus giving us a little more time // around hall-effect interrupt time to do things. An attempt // to get more speed, it doesn't seem to help - so back to the // old way of doing things. // OCR1A = ((sensor_timer << 8) | TCNT0) - (sensor_timer); // OCR1A = ((sensor_timer << 8) | TCNT0); OCR1AH = sensor_timer.bytes.low_byte; OCR1AL = TCNT0; // Clear the residual of TIMER0 TCNT0 = 0; // If we are in dynamic mode and want the rev counter, increment the rev counter #ifdef DYNAMIC_REVCOUNT // Increment the 4 byte rev counter - stored in reverse // byte order dynamicREV[0]++; dCode = 0; while (dynamicREV[dCode] > '9') { dynamicREV[dCode] = '0'; if (dCode != 3) { dynamicREV[++dCode]++; // Dont'cha just love compressed C syntax...? } } #endif // if we have only 2 lines, then we never scroll // otherwise, we have to move between the lines. // The code for no scrolling is NUM_LINES = 0 #if NUM_LINES > 0 // Check the line timer; if it has reached a particular value // then increment line_shift. When that reaches 16, wrap it // and increment cur_line. This system lets us be a little // more flexible in our timing system, and permits long delays // in the scrolling. if (line_timer >= SCROLLSPEED) { line_timer = line_timer - SCROLLSPEED; // reset in a safe way that retains any residual line_shift = (line_shift + 1) & 0x0f; // increment line_shift if (line_shift == 0x00) { // Move down 1 line in the line list, wrapping around // Made the mistake of using % which isn't a good thing // on a chip without mult/div... cur_line++; if (cur_line == NUM_LINES) { cur_line = 0; } // Move the new first line into topLine. Index through the // lineOffsets array dCode = pgm_read_byte(lineOffsets+cur_line); memcpy_P(topLine,lines+dCode,16); // If we are doing dynamic data, set it if there // is such data in the line. #ifdef DYNAMIC dynamicType = 0x00; // assume no dynamic data will be shown dCode = pgm_read_byte(dInfo+cur_line); if (dCode != 0) { dynamicPtr = topLine + (dCode & 0x0F); dynamicType = dCode; } #endif // Get the second line, which may wrap, but since we have // extra entries in lineOffsets, this is not a problem! cLine = cur_line + 1; dCode = pgm_read_byte(lineOffsets+cLine); memcpy_P(botLine,lines+dCode,16); // If we are doing dynamic data, set it if there // is such data in the line. #ifdef DYNAMIC dCode = pgm_read_byte(dInfo+cLine); if (dCode != 0) { dynamicPtr = botLine + (dCode & 0x0F); dynamicType = dCode; } #endif #ifdef SMOOTHSCROLL // get the third line, which may wrap.. cLine++; dCode = pgm_read_byte(lineOffsets+cLine); memcpy_P(scrollLine,lines+dCode,16); // If we are doing dynamic data, set it if there // is such data in the line. #ifdef DYNAMIC dCode = pgm_read_byte(dInfo+cLine); if (dCode != 0) { dynamicPtr = scrollLine + (dCode & 0x0F); dynamicType = dCode; } #endif #endif } } #else // we could do this just once when the app initializes, but // for now, let's do it here. Later we'll move it. // Note that when there are only two lines, there is no // need for the lineOffset array, and it is not used. cur_line = line_shift = 0; memcpy_P(topLine,lines,16); memcpy_P(botLine,lines+16,16); #ifdef DYNAMIC dCode = pgm_read_byte(dInfo); if (dCode != 0) { dynamicPtr = topLine + (dCode & 0x0F); dynamicType = dCode; } dCode = pgm_read_byte(dInfo+1); if (dCode != 0) { dynamicPtr = botLine + (dCode & 0x0F); dynamicType = dCode; } #endif #endif // Set the character and pixel numbers so they will overflow // on the next pixel interrupt, and cause the correct data to // be loaded. // If we are not doing halfshifts, this is simple. #ifndef HALFSHIFT charNum = 31; // will wrap to 0, the first char. Not set to 15 as you might // expect, because when it hits 15 again, the pixel output // routine will shut down. But (31+1) mod 16 = (15+1) mod 16... pixelNum = 15; // will wrap to 0, the first pixel #else // If doing half-shifts, we need to check the first byte of each buffer // and adjust things if it says to do a half-shift // if not shifted if ((topLine[0] & 0x80) == 0x00) { charNum = 31; pixelNum = 15; } else { charNum = 0; // shifted, so start in middle of first char pixelNum = 7; topLine[0] &= 0x7F; // and clear hi bit! } // repeat for bottom line if ((botLine[0] & 0x80) == 0x00) { charNum2 = 31; pixelNum2 = 15; } else { charNum2 = 0; pixelNum2 = 7; botLine[0] &= 0x7F; } // and for scroll buffer #ifdef SMOOTHSCROLL if ((scrollLine[0] & 0x80) == 0x00) { charNum3 = 31; pixelNum3 = 15; } else { charNum3 = 0; pixelNum3 = 7; scrollLine[0] &= 0x7F; } #endif #endif // Start TIMER1 on its merry way... TCCR1B |= _BV(CS10); // increment at clock/1 TIMSK |= _BV(OCIE1A); // enable interrupt when it matches OCR1A } else { // Since we don't have a valid setting for the rotation
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -