⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 main copy.c

📁 旋转16个LED灯控制程序
💻 C
📖 第 1 页 / 共 4 页
字号:
        spieeprom_read(tChar,fleds,2);		// the top 2 bytes    spieeprom_read(bChar,fleds+2,2);	// and the bottom 2        #ifdef SMOOTHSCROLL      spieeprom_read(sChar,fleds+4,2);	// and the scroll characters    #endif	// However, we do have a fancy trick of our own.  If we are	// smooth scrolling, then we clock out an extra line_shift	// BITS, thus implementing the smooth scrolling	    #ifdef SMOOTHSCROLL	  clock_scroll(line_shift);			// send 0-15 extra bits..	    #else      clock_scroll(0);					// just send the 4 bytes        #endif  }  // *** PORTB &= ~0x2;  }// Interrupt 0 executes when the button is pressed.// QUESTION: unlike the pixel output interrupt, this one// doesn't sei().  Why?SIGNAL (SIG_INT0) {    // Wait until button no longer pressed    while (! (BUTTON_PIN & _BV(BUTTON))) {  }    if (sensor_timer.bytes.high_byte == 0xFF) {        // so in this instance, we set the watchdog to reset us        sensor_timer.bytes.high_byte = 0x00;          // Re-enable the watchdog timer, then loop until    // it fires off.          WDTCSR = _BV(WDE);    for (;;);        } else {          // We want to shut everything down.  Setting sensor_timer    // to the pin value will cause both the communications    // loop and the regular timeout loop in the main() to    // give up, which results in the device going to sleep.          sensor_timer.bytes.high_byte = 0xFF;        }}// Interrupt 1 executes when the hall effect sensor fires// QUESTION: unlike the pixel output interrupt, this one// doesn't sei().  Why?SIGNAL (SIG_INT1) {    #if NUM_LINES > 0    uint8_t cLine;		// temp var used in scroll code   #endif    #ifdef DYNAMIC    	uint8_t dCode;		// temp var mostly used in dynamic code  	  #else					// also needed in this case      #if NUM_LINES > 0          uint8_t dCode;          #endif      #endif  // make sure we don't get bitten by the watchdog    asm("wdr");  // *** PORTB |= 0x8;  // The first issue we need to deal with when the hall-effect  // sensor tells us it sees the magnet is to avoid doing any  // processing if we get an interrupt too soon after the previous  // interrupt.    // hall_debounce is incremented by TIMER0, which fires every 3ms  // or so.  At the current setting of 4, this means that at least  // 15ms must elapse per trigger, which translates to about 4000  // rpm.    if (hall_debounce > HALL_DEBOUNCE_THRESH) {  // We know the number of ms since the last hall sensor trigger  // and there are 128 radial 'pixels' per sweep so divide to get  // the necessary ms between the pixel interrupts      // QUESTION: 128 or 256?      // Then we just make TIMER1 trigger at that rate!      // Reset the Timer Count Register for TIMER1 to 0, so it will  // begin counting up.      TCNT1 = 0;      // sensor_timer contains the number of TIMER0 interrupts since  // the last time we updated TIMER1.  If it has a reasonable  // value, then we use it to reset the TIMER1 clock.      // if ((sensor_timer.bytes.low_byte < 0xFF) && (sensor_timer.bytes.low_byte > 0x03)) {  if ((sensor_timer.bytes.high_byte == 0x00) || (sensor_timer.bytes.low_byte > 0x03)) {        // TIMER1 works differently from TIMER0.  It's a 16-bit timer    // that apparently increments at the system clock rate.    //    // Because TIMER0 increments at 1/256 of the clock rate, and    // fires the interrupt only when it overflows, sensor_timer    // is incremented once ever 256*256 cycles.    //    // We want TIMER1 to fire off 256 times around the loop, so    // we can display 256 lines of pixels.  We do this by putting    // sensor_timer into the high byte of TIMER1's comparator    // value, and the residual of TIMER0 (what it's counted up    // to since the last time sensor_timer was incremented) into    // the low byte, effectively a fractional value!    //    // Since TIMER0 is incrementing at 1/256 of the rate of TIMER1,    // this results in TIMER1 firing off 256 times per rotation,    // with excellent time resolution.    //    // I was quite touched by the elegance of how this works out;    // it may be able to handle the extreme RPMs of BrightSaber    // without modification...          // Set the TIMER1 comparator value.  As a hack to Limor's hack,    // reduce the timing a little bit so that the display doesn't    // span the full 360 degrees, thus giving us a little more time    // around hall-effect interrupt time to do things.  An attempt    // to get more speed, it doesn't seem to help - so back to the    // old way of doing things.        // OCR1A = ((sensor_timer << 8) | TCNT0) - (sensor_timer);        // OCR1A = ((sensor_timer << 8) | TCNT0);        OCR1AH = sensor_timer.bytes.low_byte;    OCR1AL = TCNT0;        // Clear the residual of TIMER0          TCNT0 = 0;	// If we are in dynamic mode and want the rev counter, increment the rev counter		#ifdef DYNAMIC_REVCOUNT		  // Increment the 4 byte rev counter - stored in reverse	  // byte order			  dynamicREV[0]++;	  dCode = 0;	  	  while (dynamicREV[dCode] > '9') {		dynamicREV[dCode] = '0';		if (dCode != 3) {		  dynamicREV[++dCode]++;			// Dont'cha just love compressed C syntax...?		}      }			#endif		// if we have only 2 lines, then we never scroll	// otherwise, we have to move between the lines.	// The code for no scrolling is NUM_LINES = 0	    #if NUM_LINES > 0      // Check the line timer; if it has reached a particular value      // then increment line_shift.  When that reaches 16, wrap it      // and increment cur_line.  This system lets us be a little      // more flexible in our timing system, and permits long delays      // in the scrolling.          if (line_timer >= SCROLLSPEED) {            line_timer = line_timer - SCROLLSPEED;	// reset in a safe way that retains any residual        line_shift = (line_shift + 1) & 0x0f;	// increment line_shift              if (line_shift == 0x00) {	      // Move down 1 line in the line list, wrapping around	  	  // Made the mistake of using % which isn't a good thing	  	  // on a chip without mult/div...	  	  	      cur_line++;	      	      if (cur_line == NUM_LINES) {	        cur_line = 0;	      }	  	      // Move the new first line into topLine.  Index through the	      // lineOffsets array	      	      dCode = pgm_read_byte(lineOffsets+cur_line);	  	      memcpy_P(topLine,lines+dCode,16);	      	      // If we are doing dynamic data, set it if there	      // is such data in the line.	      	      #ifdef DYNAMIC	      	        dynamicType = 0x00;					// assume no dynamic data will be shown	        	        dCode = pgm_read_byte(dInfo+cur_line);	        	        if (dCode != 0) {	          dynamicPtr = topLine + (dCode & 0x0F);	          dynamicType = dCode;	        }	        	      #endif	  	      // Get the second line, which may wrap, but since we have	      // extra entries in lineOffsets, this is not a problem!	  	      cLine = cur_line + 1;	      	      dCode = pgm_read_byte(lineOffsets+cLine);	      memcpy_P(botLine,lines+dCode,16);		  	      // If we are doing dynamic data, set it if there	      // is such data in the line.	      	      #ifdef DYNAMIC	      	        dCode = pgm_read_byte(dInfo+cLine);	        	        if (dCode != 0) {	          dynamicPtr = botLine + (dCode & 0x0F);	          dynamicType = dCode;	        }	        	      #endif	  		  #ifdef SMOOTHSCROLL	        // get the third line, which may wrap..	  	        cLine++;	      	        dCode = pgm_read_byte(lineOffsets+cLine);	        memcpy_P(scrollLine,lines+dCode,16);	    		        // If we are doing dynamic data, set it if there	        // is such data in the line.	      	        #ifdef DYNAMIC	      	          dCode = pgm_read_byte(dInfo+cLine);	        	          if (dCode != 0) {	            dynamicPtr = scrollLine + (dCode & 0x0F);	            dynamicType = dCode;	       	  }	        	        #endif	  		  #endif		        }          }    #else      // we could do this just once when the app initializes, but      // for now, let's do it here.  Later we'll move it.          // Note that when there are only two lines, there is no      // need for the lineOffset array, and it is not used.      	  cur_line = line_shift = 0;	  memcpy_P(topLine,lines,16);	  memcpy_P(botLine,lines+16,16);		  #ifdef DYNAMIC	      	    dCode = pgm_read_byte(dInfo);	        	    if (dCode != 0) {	       dynamicPtr = topLine + (dCode & 0x0F);	       dynamicType = dCode;	    }	        	    dCode = pgm_read_byte(dInfo+1);	        	    if (dCode != 0) {	       dynamicPtr = botLine + (dCode & 0x0F);	       dynamicType = dCode;	    }	        	  #endif	    #endif    // Set the character and pixel numbers so they will overflow    // on the next pixel interrupt, and cause the correct data to    // be loaded.        // If we are not doing halfshifts, this is simple.        #ifndef HALFSHIFT          charNum = 31;		// will wrap to 0, the first char.  Not set to 15 as you might    					// expect, because when it hits 15 again, the pixel output    					// routine will shut down.  But (31+1) mod 16 = (15+1) mod 16...      pixelNum = 15;		// will wrap to 0, the first pixel        #else          // If doing half-shifts, we need to check the first byte of each buffer      // and adjust things if it says to do a half-shift            // if not shifted            if ((topLine[0] & 0x80) == 0x00) {              charNum = 31;        pixelNum = 15;              } else {              charNum = 0;		// shifted, so start in middle of first char        pixelNum = 7;        topLine[0] &= 0x7F;	// and clear hi bit!              }            // repeat for bottom line            if ((botLine[0] & 0x80) == 0x00) {              charNum2 = 31;        pixelNum2 = 15;              } else {              charNum2 = 0;        pixelNum2 = 7;        botLine[0] &= 0x7F;              }            // and for scroll buffer            #ifdef SMOOTHSCROLL              if ((scrollLine[0] & 0x80) == 0x00) {                charNum3 = 31;          pixelNum3 = 15;                } else {                charNum3 = 0;          pixelNum3 = 7;          scrollLine[0] &= 0x7F;                }      #endif          #endif        // Start TIMER1 on its merry way...          TCCR1B |= _BV(CS10);		// increment at clock/1    TIMSK |= _BV(OCIE1A);		// enable interrupt when it matches OCR1A      } else {        // Since we don't have a valid setting for the rotation

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -