⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 spokepov.lss

📁 旋转16个LED灯控制程序
💻 LSS
📖 第 1 页 / 共 5 页
字号:

spokepov.elf:     file format elf32-avr

Sections:
Idx Name          Size      VMA       LMA       File off  Algn
  0 .text         00000808  00000000  00000000  00000094  2**0
                  CONTENTS, ALLOC, LOAD, READONLY, CODE
  1 .data         00000008  00800060  00000808  0000089c  2**0
                  CONTENTS, ALLOC, LOAD, DATA
  2 .bss          00000047  00800068  00800068  000008a4  2**0
                  ALLOC
  3 .noinit       00000000  008000af  008000af  000008a4  2**0
                  CONTENTS
  4 .eeprom       00000000  00810000  00810000  000008a4  2**0
                  CONTENTS
  5 .stab         00000354  00000000  00000000  000008a4  2**2
                  CONTENTS, READONLY, DEBUGGING
  6 .stabstr      00000084  00000000  00000000  00000bf8  2**0
                  CONTENTS, READONLY, DEBUGGING
  7 .debug_aranges 00000028  00000000  00000000  00000c7c  2**0
                  CONTENTS, READONLY, DEBUGGING
  8 .debug_pubnames 00000218  00000000  00000000  00000ca4  2**0
                  CONTENTS, READONLY, DEBUGGING
  9 .debug_info   000006f5  00000000  00000000  00000ebc  2**0
                  CONTENTS, READONLY, DEBUGGING
 10 .debug_abbrev 000001c2  00000000  00000000  000015b1  2**0
                  CONTENTS, READONLY, DEBUGGING
 11 .debug_line   000005f6  00000000  00000000  00001773  2**0
                  CONTENTS, READONLY, DEBUGGING
 12 .debug_str    000002f1  00000000  00000000  00001d69  2**0
                  CONTENTS, READONLY, DEBUGGING
Disassembly of section .text:

00000000 <__vectors>:
   0:	32 c0       	rjmp	.+100    	; 0x66 <__init>
   2:	9c c1       	rjmp	.+824    	; 0x33c <__vector_1>
   4:	d9 c1       	rjmp	.+946    	; 0x3b8 <__vector_2>
   6:	48 c0       	rjmp	.+144    	; 0x98 <__bad_interrupt>
   8:	b1 c0       	rjmp	.+354    	; 0x16c <__vector_4>
   a:	46 c0       	rjmp	.+140    	; 0x98 <__bad_interrupt>
   c:	6d c0       	rjmp	.+218    	; 0xe8 <__vector_6>
   e:	44 c0       	rjmp	.+136    	; 0x98 <__bad_interrupt>
  10:	43 c0       	rjmp	.+134    	; 0x98 <__bad_interrupt>
  12:	42 c0       	rjmp	.+132    	; 0x98 <__bad_interrupt>
  14:	41 c0       	rjmp	.+130    	; 0x98 <__bad_interrupt>
  16:	40 c0       	rjmp	.+128    	; 0x98 <__bad_interrupt>
  18:	3f c0       	rjmp	.+126    	; 0x98 <__bad_interrupt>
  1a:	3e c0       	rjmp	.+124    	; 0x98 <__bad_interrupt>
  1c:	3d c0       	rjmp	.+122    	; 0x98 <__bad_interrupt>
  1e:	3c c0       	rjmp	.+120    	; 0x98 <__bad_interrupt>
  20:	3b c0       	rjmp	.+118    	; 0x98 <__bad_interrupt>
  22:	3a c0       	rjmp	.+116    	; 0x98 <__bad_interrupt>
  24:	39 c0       	rjmp	.+114    	; 0x98 <__bad_interrupt>

00000026 <__ctors_end>:
  26:	30 30       	cpi	r19, 0x00	; 0
  28:	33 30       	cpi	r19, 0x03	; 3
  2a:	30 36       	cpi	r19, 0x60	; 96
  2c:	30 31       	cpi	r19, 0x10	; 16
  2e:	31 30       	cpi	r19, 0x01	; 1
  30:	32 33       	cpi	r19, 0x32	; 50
  32:	30 34       	cpi	r19, 0x40	; 64
  34:	36 30       	cpi	r19, 0x06	; 6
  36:	39 32       	cpi	r19, 0x29	; 41
  38:	31 38       	cpi	r19, 0x81	; 129
  3a:	33 33       	cpi	r19, 0x33	; 51
  3c:	36 36       	cpi	r19, 0x66	; 102
  3e:	37 33       	cpi	r19, 0x37	; 55
  40:	32 00       	.word	0x0032	; ????

00000042 <dInfo>:
  42:	00 28 00                                            .(.

00000045 <lines>:
  45:	20 20 20 52 50 4d 20 43 4f 55 4e 54 3a 20 20 20        RPM COUNT:   
  55:	20 20 20 20 20 20 30 30 30 30 20 20 20 20 20 20           0000      
	...

00000066 <__init>:
  66:	11 24       	eor	r1, r1
  68:	1f be       	out	0x3f, r1	; 63
  6a:	cf ed       	ldi	r28, 0xDF	; 223
  6c:	cd bf       	out	0x3d, r28	; 61

0000006e <__do_copy_data>:
  6e:	10 e0       	ldi	r17, 0x00	; 0
  70:	a0 e6       	ldi	r26, 0x60	; 96
  72:	b0 e0       	ldi	r27, 0x00	; 0
  74:	e8 e0       	ldi	r30, 0x08	; 8
  76:	f8 e0       	ldi	r31, 0x08	; 8
  78:	03 c0       	rjmp	.+6      	; 0x80 <.do_copy_data_start>

0000007a <.do_copy_data_loop>:
  7a:	c8 95       	lpm
  7c:	31 96       	adiw	r30, 0x01	; 1
  7e:	0d 92       	st	X+, r0

00000080 <.do_copy_data_start>:
  80:	a8 36       	cpi	r26, 0x68	; 104
  82:	b1 07       	cpc	r27, r17
  84:	d1 f7       	brne	.-12     	; 0x7a <.do_copy_data_loop>

00000086 <__do_clear_bss>:
  86:	10 e0       	ldi	r17, 0x00	; 0
  88:	a8 e6       	ldi	r26, 0x68	; 104
  8a:	b0 e0       	ldi	r27, 0x00	; 0
  8c:	01 c0       	rjmp	.+2      	; 0x90 <.do_clear_bss_start>

0000008e <.do_clear_bss_loop>:
  8e:	1d 92       	st	X+, r1

00000090 <.do_clear_bss_start>:
  90:	af 3a       	cpi	r26, 0xAF	; 175
  92:	b1 07       	cpc	r27, r17
  94:	e1 f7       	brne	.-8      	; 0x8e <.do_clear_bss_loop>
  96:	c6 c2       	rjmp	.+1420   	; 0x624 <main>

00000098 <__bad_interrupt>:
  98:	b3 cf       	rjmp	.-154    	; 0x0 <__vectors>

0000009a <clock_scroll>:
// Sends 4 bytes + sCount extra bits over the serial link
// to implement smooth scrolling.  Can be used with a 0
// parameter to just send out the regular 4 bytes.

void clock_scroll(uint8_t sCount) {
  9a:	cf 93       	push	r28
  9c:	c8 2f       	mov	r28, r24

  // First, send the basic 4 bytes, they go no matter what
  
  spi_transfer(fleds[0]);
  9e:	80 91 89 00 	lds	r24, 0x0089
  a2:	76 d3       	rcall	.+1772   	; 0x790 <spi_transfer>
  spi_transfer(fleds[1]);
  a4:	80 91 8a 00 	lds	r24, 0x008A
  a8:	73 d3       	rcall	.+1766   	; 0x790 <spi_transfer>
  spi_transfer(fleds[2]);
  aa:	80 91 8b 00 	lds	r24, 0x008B
  ae:	70 d3       	rcall	.+1760   	; 0x790 <spi_transfer>
  spi_transfer(fleds[3]);
  b0:	80 91 8c 00 	lds	r24, 0x008C
  b4:	6d d3       	rcall	.+1754   	; 0x790 <spi_transfer>
 
  // If there is anything to do..
  
  if (sCount != 0) {
  b6:	cc 23       	and	r28, r28
  b8:	79 f0       	breq	.+30     	; 0xd8 <clock_scroll+0x3e>
  
    // If we have < 8 bits to transfer
    
    if (sCount < 8) {
  ba:	c8 30       	cpi	r28, 0x08	; 8
  bc:	20 f4       	brcc	.+8      	; 0xc6 <clock_scroll+0x2c>
    
       // Then that is all that we need to do
       
       spi_transfer_n(fleds[4],sCount);
  be:	6c 2f       	mov	r22, r28
  c0:	80 91 8d 00 	lds	r24, 0x008D
  c4:	08 c0       	rjmp	.+16     	; 0xd6 <clock_scroll+0x3c>
       
    } else {
    
      // First latch out the full first 8 bits
       
  	  spi_transfer(fleds[4]);
  c6:	80 91 8d 00 	lds	r24, 0x008D
  ca:	62 d3       	rcall	.+1732   	; 0x790 <spi_transfer>
  	   
  	  // How many bits left to do?
  	   
  	  sCount = sCount - 8;
  cc:	c8 50       	subi	r28, 0x08	; 8
  	   
  	  if (sCount != 0) {
  ce:	21 f0       	breq	.+8      	; 0xd8 <clock_scroll+0x3e>
  	   
        spi_transfer_n(fleds[5],sCount);
  d0:	6c 2f       	mov	r22, r28
  d2:	80 91 8e 00 	lds	r24, 0x008E
  d6:	4e d3       	rcall	.+1692   	; 0x774 <spi_transfer_n>
         
  	  }
  	   
  	}
  	
  }
   
  // finally, latch the bits into the LEDS
  
  LATCH_SELECT_PORT |= _BV(FRONT);
  d8:	94 9a       	sbi	0x12, 4	; 18
	...
  NOP; NOP; NOP; NOP;
  LATCH_SELECT_PORT &= ~_BV(FRONT);
  e2:	94 98       	cbi	0x12, 4	; 18
  e4:	cf 91       	pop	r28
  e6:	08 95       	ret

000000e8 <__vector_6>:

}

// TIMER0 interrupt handler.  This runs about every 8ms
// AFAICT.  It increments the hall_debounce and sensor_timer
// values until they pin.

// QUESTION: what's with the setting and clearing of PORTB0?
// According to the wiring diagram, it isn't connected to
// anything.  Is this vestigial code from when you were using
// Pin Change Interrupts?  Or is it debugger code so you
// can monitor the pins and tell when something happens.

SIGNAL (SIG_TIMER0_OVF) {
  e8:	1f 92       	push	r1
  ea:	0f 92       	push	r0
  ec:	0f b6       	in	r0, 0x3f	; 63
  ee:	0f 92       	push	r0
  f0:	11 24       	eor	r1, r1
  f2:	2f 93       	push	r18
  f4:	8f 93       	push	r24
  f6:	9f 93       	push	r25

  // *** PORTB |= 0x1;

  if (hall_debounce != 0xFF)
  f8:	80 91 86 00 	lds	r24, 0x0086
  fc:	8f 3f       	cpi	r24, 0xFF	; 255
  fe:	29 f0       	breq	.+10     	; 0x10a <__vector_6+0x22>
    hall_debounce++;
 100:	80 91 86 00 	lds	r24, 0x0086
 104:	8f 5f       	subi	r24, 0xFF	; 255
 106:	80 93 86 00 	sts	0x0086, r24
  
  if (sensor_timer != 0xFFFF)
 10a:	80 91 87 00 	lds	r24, 0x0087
 10e:	90 91 88 00 	lds	r25, 0x0088
 112:	8f 5f       	subi	r24, 0xFF	; 255
 114:	9f 4f       	sbci	r25, 0xFF	; 255
 116:	49 f0       	breq	.+18     	; 0x12a <__vector_6+0x42>
    sensor_timer++;
 118:	80 91 87 00 	lds	r24, 0x0087
 11c:	90 91 88 00 	lds	r25, 0x0088
 120:	01 96       	adiw	r24, 0x01	; 1
 122:	90 93 88 00 	sts	0x0088, r25
 126:	80 93 87 00 	sts	0x0087, r24

  #if NUM_LINES > 0

    // Increment the line timers - we only need to do this
    // if we are scrolling
  
    line_timer_l++;				// increment the low byte
 12a:	80 91 62 00 	lds	r24, 0x0062
 12e:	8f 5f       	subi	r24, 0xFF	; 255
 130:	80 93 62 00 	sts	0x0062, r24
  
    if (line_timer_l == 0) {	// if we wrapped around, then
 134:	80 91 62 00 	lds	r24, 0x0062
 138:	88 23       	and	r24, r24
 13a:	29 f4       	brne	.+10     	; 0x146 <__vector_6+0x5e>
      line_timer_h++;			// increment the high byte as well
 13c:	80 91 70 00 	lds	r24, 0x0070
 140:	8f 5f       	subi	r24, 0xFF	; 255
 142:	80 93 70 00 	sts	0x0070, r24
 146:	9f 91       	pop	r25
 148:	8f 91       	pop	r24
 14a:	2f 91       	pop	r18
 14c:	0f 90       	pop	r0
 14e:	0f be       	out	0x3f, r0	; 63
 150:	0f 90       	pop	r0
 152:	1f 90       	pop	r1
 154:	18 95       	reti

00000156 <set_all>:
    }
  
  #endif

// *** PORTB &= ~0x1;

}

// Hack - I used to copy the topChar, etc. variables into local
// variables in the TIMER1 routine, but I am running out of stack space.  So instead
// I'm going to keep interrupts off during this routine and
// use the regular versions.  To make it easy to do this I'm
// remapping the local variables with defines.
  
// #define USE_LOCAL_TIMER1	1

// If USE_LOCAL_TIMER1 is not defined, then the TIMER1 routine will not
// enable interrupts.
  
// As we sweep around the circle, we display 256 radial pixel
// lines, once per TIMER1 interrupt.  This is broken down into
// 16 16-pixel wide characters, and we have two characters
// stacked vertically.  To save time, we keep track of the
// character number, pixel number (in the character), and
// pointers into the eeprom for each of the two chars being
// displayed.

// This code has to be fast enough to complete execution before
// it gets interrupted again - and it must not make any subroutine
// calls, since that'll mess up the stack and cause the entire
// system to reset.

volatile uint16_t topChar = 0;		// top character being displayed (address in EEPROM of data)
volatile uint16_t botChar = 0;		// bottom character being displayed
volatile uint8_t charNum = 0;		// character number
volatile uint8_t pixelNum = 0;		// pixel number

#ifdef USE_LOCAL_TIMER1
  volatile uint8_t clean = 0;	    // have these values been changed outside TIMER1?
#endif

#ifdef SMOOTHSCROLL

  volatile uint16_t scrollChar = 0;	// extra scroll character

#endif

// This routine gets called every time the pixel timer runs down;
// in other words, once per "scan line", 256 times per revolution
// of the SpokePOV.  Its purpose is to update the LEDs.

SIGNAL (SIG_TIMER1_COMPA) {

  uint8_t cCode;					// character code to display
  
  #ifdef USE_LOCALUSE_LOCAL_TIMER1
  
    uint16_t tChar;					// local copies of the values
    uint16_t bChar;
    uint8_t cNum;						
    uint8_t pNum;
  
    #ifdef SMOOTHSCROLL

      uint16_t sChar;					// extra scroll character

    #endif

    // When an interrupt routine is called, interrupts are disabled.
    // but it's important to let other interrupts interrupt us, so
    // they need to be re-enabled.
	
    sei();

    // Copy the volatile variables into their local equivalents
  
    tChar = topChar;
    bChar = botChar;
    cNum = charNum;
    pNum = pixelNum;

    #ifdef SMOOTHSCROLL
 
      sChar = scrollChar;

    #endif
    
  #else
  
    #define	tChar	topChar
    #define	bChar	botChar
    #define	cNum	charNum
    #define	pNum	pixelNum
    #define	sChar	scrollChar
    
  #endif

  // If it has been less than STANDBY_TIMEOUT seconds since the last time we
  // got a Hall Effect sensor update, then proceed as normal and
  // update the LEDs.
  
  // QUESTION: what is F_CPU?
  
  if (sensor_timer < ((F_CPU/NUM_PIXELS)/256 * STANDBY_TIMEOUT)) {    
    
    // *** PORTA |= 0x1;
    
    // The first thing we do is increment our character position; this
    // is done here to avoid code duplication.  This means that the
    // Hall Effect interrupt routine must set them up so they "wrap"
    // into the first valid values.
    
    // Move to the next pixel in the character
    
    pNum++;
    
    // If we have moved off the edge of the character, then
    // we need to move to the next character
    
    if (pNum == 16) {
    
      // If we will wrap around to the first character, turn off the pixel
      // timer, clear the display, and exit.  Might speed things up a bit
      
      if (cNum == 15) {

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -