📄 gtest-internal.h
字号:
// actual_expression: "bar"// expected_value: "5"// actual_value: "6"//// The ignoring_case parameter is true iff the assertion is a// *_STRCASEEQ*. When it's true, the string " (ignoring case)" will// be inserted into the message.AssertionResult EqFailure(const char* expected_expression, const char* actual_expression, const String& expected_value, const String& actual_value, bool ignoring_case);// This template class represents an IEEE floating-point number// (either single-precision or double-precision, depending on the// template parameters).//// The purpose of this class is to do more sophisticated number// comparison. (Due to round-off error, etc, it's very unlikely that// two floating-points will be equal exactly. Hence a naive// comparison by the == operation often doesn't work.)//// Format of IEEE floating-point://// The most-significant bit being the leftmost, an IEEE// floating-point looks like//// sign_bit exponent_bits fraction_bits//// Here, sign_bit is a single bit that designates the sign of the// number.//// For float, there are 8 exponent bits and 23 fraction bits.//// For double, there are 11 exponent bits and 52 fraction bits.//// More details can be found at// http://en.wikipedia.org/wiki/IEEE_floating-point_standard.//// Template parameter://// RawType: the raw floating-point type (either float or double)template <typename RawType>class FloatingPoint { public: // Defines the unsigned integer type that has the same size as the // floating point number. typedef typename TypeWithSize<sizeof(RawType)>::UInt Bits; // Constants. // # of bits in a number. static const size_t kBitCount = 8*sizeof(RawType); // # of fraction bits in a number. static const size_t kFractionBitCount = std::numeric_limits<RawType>::digits - 1; // # of exponent bits in a number. static const size_t kExponentBitCount = kBitCount - 1 - kFractionBitCount; // The mask for the sign bit. static const Bits kSignBitMask = static_cast<Bits>(1) << (kBitCount - 1); // The mask for the fraction bits. static const Bits kFractionBitMask = ~static_cast<Bits>(0) >> (kExponentBitCount + 1); // The mask for the exponent bits. static const Bits kExponentBitMask = ~(kSignBitMask | kFractionBitMask); // How many ULP's (Units in the Last Place) we want to tolerate when // comparing two numbers. The larger the value, the more error we // allow. A 0 value means that two numbers must be exactly the same // to be considered equal. // // The maximum error of a single floating-point operation is 0.5 // units in the last place. On Intel CPU's, all floating-point // calculations are done with 80-bit precision, while double has 64 // bits. Therefore, 4 should be enough for ordinary use. // // See the following article for more details on ULP: // http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm. static const size_t kMaxUlps = 4; // Constructs a FloatingPoint from a raw floating-point number. // // On an Intel CPU, passing a non-normalized NAN (Not a Number) // around may change its bits, although the new value is guaranteed // to be also a NAN. Therefore, don't expect this constructor to // preserve the bits in x when x is a NAN. explicit FloatingPoint(const RawType& x) : value_(x) {} // Static methods // Reinterprets a bit pattern as a floating-point number. // // This function is needed to test the AlmostEquals() method. static RawType ReinterpretBits(const Bits bits) { FloatingPoint fp(0); fp.bits_ = bits; return fp.value_; } // Returns the floating-point number that represent positive infinity. static RawType Infinity() { return ReinterpretBits(kExponentBitMask); } // Non-static methods // Returns the bits that represents this number. const Bits &bits() const { return bits_; } // Returns the exponent bits of this number. Bits exponent_bits() const { return kExponentBitMask & bits_; } // Returns the fraction bits of this number. Bits fraction_bits() const { return kFractionBitMask & bits_; } // Returns the sign bit of this number. Bits sign_bit() const { return kSignBitMask & bits_; } // Returns true iff this is NAN (not a number). bool is_nan() const { // It's a NAN if the exponent bits are all ones and the fraction // bits are not entirely zeros. return (exponent_bits() == kExponentBitMask) && (fraction_bits() != 0); } // Returns true iff this number is at most kMaxUlps ULP's away from // rhs. In particular, this function: // // - returns false if either number is (or both are) NAN. // - treats really large numbers as almost equal to infinity. // - thinks +0.0 and -0.0 are 0 DLP's apart. bool AlmostEquals(const FloatingPoint& rhs) const { // The IEEE standard says that any comparison operation involving // a NAN must return false. if (is_nan() || rhs.is_nan()) return false; return DistanceBetweenSignAndMagnitudeNumbers(bits_, rhs.bits_) <= kMaxUlps; } private: // Converts an integer from the sign-and-magnitude representation to // the biased representation. More precisely, let N be 2 to the // power of (kBitCount - 1), an integer x is represented by the // unsigned number x + N. // // For instance, // // -N + 1 (the most negative number representable using // sign-and-magnitude) is represented by 1; // 0 is represented by N; and // N - 1 (the biggest number representable using // sign-and-magnitude) is represented by 2N - 1. // // Read http://en.wikipedia.org/wiki/Signed_number_representations // for more details on signed number representations. static Bits SignAndMagnitudeToBiased(const Bits &sam) { if (kSignBitMask & sam) { // sam represents a negative number. return ~sam + 1; } else { // sam represents a positive number. return kSignBitMask | sam; } } // Given two numbers in the sign-and-magnitude representation, // returns the distance between them as an unsigned number. static Bits DistanceBetweenSignAndMagnitudeNumbers(const Bits &sam1, const Bits &sam2) { const Bits biased1 = SignAndMagnitudeToBiased(sam1); const Bits biased2 = SignAndMagnitudeToBiased(sam2); return (biased1 >= biased2) ? (biased1 - biased2) : (biased2 - biased1); } union { RawType value_; // The raw floating-point number. Bits bits_; // The bits that represent the number. };};// Typedefs the instances of the FloatingPoint template class that we// care to use.typedef FloatingPoint<float> Float;typedef FloatingPoint<double> Double;// In order to catch the mistake of putting tests that use different// test fixture classes in the same test case, we need to assign// unique IDs to fixture classes and compare them. The TypeId type is// used to hold such IDs. The user should treat TypeId as an opaque// type: the only operation allowed on TypeId values is to compare// them for equality using the == operator.typedef const void* TypeId;template <typename T>class TypeIdHelper { public: // dummy_ must not have a const type. Otherwise an overly eager // compiler (e.g. MSVC 7.1 & 8.0) may try to merge // TypeIdHelper<T>::dummy_ for different Ts as an "optimization". static bool dummy_;};template <typename T>bool TypeIdHelper<T>::dummy_ = false;// GetTypeId<T>() returns the ID of type T. Different values will be// returned for different types. Calling the function twice with the// same type argument is guaranteed to return the same ID.template <typename T>TypeId GetTypeId() { // The compiler is required to allocate a different // TypeIdHelper<T>::dummy_ variable for each T used to instantiate // the template. Therefore, the address of dummy_ is guaranteed to // be unique. return &(TypeIdHelper<T>::dummy_);}// Returns the type ID of ::testing::Test. Always call this instead// of GetTypeId< ::testing::Test>() to get the type ID of// ::testing::Test, as the latter may give the wrong result due to a// suspected linker bug when compiling Google Test as a Mac OS X// framework.TypeId GetTestTypeId();// Defines the abstract factory interface that creates instances// of a Test object.class TestFactoryBase { public: virtual ~TestFactoryBase() {} // Creates a test instance to run. The instance is both created and destroyed // within TestInfoImpl::Run() virtual Test* CreateTest() = 0; protected: TestFactoryBase() {} private: GTEST_DISALLOW_COPY_AND_ASSIGN_(TestFactoryBase);};// This class provides implementation of TeastFactoryBase interface.// It is used in TEST and TEST_F macros.template <class TestClass>class TestFactoryImpl : public TestFactoryBase { public: virtual Test* CreateTest() { return new TestClass; }};#ifdef GTEST_OS_WINDOWS// Predicate-formatters for implementing the HRESULT checking macros// {ASSERT|EXPECT}_HRESULT_{SUCCEEDED|FAILED}// We pass a long instead of HRESULT to avoid causing an// include dependency for the HRESULT type.AssertionResult IsHRESULTSuccess(const char* expr, long hr); // NOLINTAssertionResult IsHRESULTFailure(const char* expr, long hr); // NOLINT#endif // GTEST_OS_WINDOWS// Formats a source file path and a line number as they would appear// in a compiler error message.inline String FormatFileLocation(const char* file, int line) { const char* const file_name = file == NULL ? "unknown file" : file; if (line < 0) { return String::Format("%s:", file_name); }#ifdef _MSC_VER return String::Format("%s(%d):", file_name, line);#else return String::Format("%s:%d:", file_name, line);#endif // _MSC_VER}// Types of SetUpTestCase() and TearDownTestCase() functions.typedef void (*SetUpTestCaseFunc)();typedef void (*TearDownTestCaseFunc)();// Creates a new TestInfo object and registers it with Google Test;// returns the created object.//// Arguments://// test_case_name: name of the test case// name: name of the test// test_case_comment: a comment on the test case that will be included in// the test output
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -