📄 emgmm.m
字号:
function model=emgmm(X,options,init_model)% EMGMM Expectation-Maximization Algorithm for Gaussian mixture model.% % Synopsis:% model = emgmm(X)% model = emgmm(X,options)% model = emgmm(X,options,init_model)%% Description:% This function implements the Expectation-Maximization algorithm % (EM) [Schles68][DLR77] which computes the maximum-likelihood % estimate of the paramaters of the Gaussian mixture model (GMM). % The EM algorithm is an iterative procedure which monotonically % increases log-likelihood of the current estimate until it reaches % a local optimum. %% The number of components of the GMM is given in options.ncomp % (default 2).%% The following three stopping are condition used:% 1. Improvement of the log-likelihood is less than given% threshold% logL(t+1) - logL(t) < options.eps_logL% 2. Change of the squared differences of a estimated posteriory % probabilities is less than given threshold% ||alpha(t+1) - alpha(t)||^2 < options.eps_alpha% 3. Number of iterations exceeds given threshold.% t >= options.tmax %% The type of estimated covariance matrices is optional:% options.cov_type = 'full' full covariance matrix (default)% options.cov_type = 'diag' diagonal covarinace matrix% cov_options.type = 'spherical' spherical covariance matrix%% The initial model (estimate) is selected:% 1. randomly (options.init = 'random') % 2. using K-means (options.init = 'kmeans')% 3. using the user specified init_model.%% Input:% X [dim x num_data] Data sample.% % options [struct] Control paramaters:% .ncomp [1x1] Number of components of GMM (default 2).% .tmax [1x1] Maximal number of iterations (default inf).% .eps_logL [1x1] Minimal improvement in log-likelihood (default 0).% .eps_alpha [1x1] Minimal change of Alphas (default 0).% .cov_type [1x1] Type of estimated covarince matrices (see above).% .init [string] 'random' use random initial model (default);% 'kmeans' use K-means to find initial model.% .verb [1x1] If 1 then info is displayed (default 0).% % init_model [struct] Initial model:% .Mean [dim x ncomp] Mean vectors.% .Cov [dim x dim x ncomp] Covariance matrices.% .Priors [1 x ncomp] Weights of mixture components.% .Alpha [ncomp x num_data] (optional) Distribution of hidden state.% .t [1x1] (optional) Counter of iterations.%% Output:% model [struct] Estimated Gaussian mixture model:% .Mean [dim x ncomp] Mean vectors.% .Cov [dim x dim x ncomp] Covariance matrices.% .Prior [1 x ncomp] Weights of mixture components.% .t [1x1] Number iterations.% .options [struct] Copy of used options.% .exitflag [int] 0 ... maximal number of iterations was exceeded.% 1 or 2 ... EM has converged; indicates which stopping % was used (see above).% % Example:% Note: if EM algorithm does not converge run it again from different% initial model.%% EM is used to estimate parameters of mixture of 2 Guassians:% true_model = struct('Mean',[-2 2],'Cov',[1 0.5],'Prior',[0.4 0.6]);% sample = gmmsamp(true_model, 100);% estimated_model = emgmm(sample.X,struct('ncomp',2,'verb',1));%% figure; ppatterns(sample.X);% h1=pgmm(true_model,struct('color','r'));% h2=pgmm(estimated_model,struct('color','b'));% legend([h1(1) h2(1)],'Ground truth', 'ML estimation'); % figure; hold on; xlabel('iterations'); ylabel('log-likelihood');% plot( estimated_model.logL );%% See also % MLCGMM, MMGAUSS, PDFGMM, GMMSAMP.%% About: Statistical Patte7rn Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 26-may-2004, VF, initialization by K-means added% 1-may-2004, VF% 19-sep-2003, VF% 16-mar-2003, VF% processing input arguments % -----------------------------------------if nargin < 2, options=[]; else options=c2s(options); endif ~isfield( options, 'ncomp'), options.ncomp = 2; endif ~isfield( options, 'tmax'), options.tmax = inf; endif ~isfield( options, 'eps_alpha'), options.eps_alpha = 0; endif ~isfield( options, 'eps_logL'), options.eps_logL = 0; endif ~isfield( options, 'cov_type'), options.cov_type = 'full'; endif ~isfield( options, 'init'), options.init = 'random'; endif ~isfield( options, 'verb'), options.verb = 0; end[dim,num_data] = size(X);% setup initial model % ---------------------------------if nargin == 3, % take model from input %----------------------------- model = init_model; if ~isfield(model,'t'), model.t = 0; end if ~isfield(model,'Alpha'), model.Alpha=-inf*ones(options.num_gauss,num_data); end if ~isfield(model,'logL'), model.logL=-inf; endelse % compute initial model %------------------------------------ switch options.init, % random model case 'random' % takes randomly first num_gauss trn. vectors as mean vectors inx = randperm(num_data); inx=inx(1:options.ncomp); centers_X = X(:,inx); % K-means clustering case 'kmeans' tmp = kmeans( X, options.ncomp ); centers_X = tmp.X; otherwise error('Unknown initialization method.'); end knn = knnrule({'X',centers_X,'y',[1:options.ncomp]},1); y = knnclass(X,knn); % uses ML estimation of complete data model = mlcgmm( {'X',X,'y',y}, options.cov_type ); model.Alpha = zeros(options.ncomp,num_data); for i = 1:options.ncomp, model.Alpha(i,find(y==i)) = 1; end model.logL= -inf; model.t = 1; model.options = options; model.fun = 'pdfgmm'; end% Main loop of EM algorithm % -------------------------------------model.exitflag = 0;while model.exitflag == 0 & model.t < options.tmax, % counter of iterations model.t = model.t + 1; %---------------------------------------------------- % E-Step % The distribution of hidden states is computed based % on the current estimate. %---------------------------------------------------- newAlpha = (model.Prior(:)*ones(1,num_data)).*pdfgauss(X, model); newLogL = sum(log(sum(newAlpha,1))); newAlpha = newAlpha./(ones(options.ncomp,1)*sum(newAlpha,1)); %------------------------------------------------------ % Stopping conditions. %------------------------------------------------------ % 1) change in distribution of hidden state Alpha model.delta_alpha = sum(sum((model.Alpha - newAlpha).^2)); % 2) change in log-Likelihood model.delta_logL = newLogL - model.logL(end); model.logL = [model.logL newLogL]; if options.verb, fprintf('%d: logL=%f, delta_logL=%f, delta_alpha=%f\n',... model.t, model.logL(end), model.delta_logL, model.delta_alpha ); end if options.eps_logL >= model.delta_logL, model.exitflag = 1; elseif options.eps_alpha >= model.delta_alpha, model.exitflag = 2; else model.Alpha = newAlpha; %---------------------------------------------------- % M-Step % The new parameters maximizing expectation of % log-likelihood are computed. %---------------------------------------------------- tmp_model = melgmm(X,model.Alpha,options.cov_type); model.Mean = tmp_model.Mean; model.Cov = tmp_model.Cov; model.Prior = tmp_model.Prior; endend % while main loopreturn;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -