⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bn_mul.c

📁 运行在sdl上的rdesktop(远程桌面)
💻 C
📖 第 1 页 / 共 2 页
字号:
/* crypto/bn/bn_mul.c *//* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com) * All rights reserved. * * This package is an SSL implementation written * by Eric Young (eay@cryptsoft.com). * The implementation was written so as to conform with Netscapes SSL. *  * This library is free for commercial and non-commercial use as long as * the following conditions are aheared to.  The following conditions * apply to all code found in this distribution, be it the RC4, RSA, * lhash, DES, etc., code; not just the SSL code.  The SSL documentation * included with this distribution is covered by the same copyright terms * except that the holder is Tim Hudson (tjh@cryptsoft.com). *  * Copyright remains Eric Young's, and as such any Copyright notices in * the code are not to be removed. * If this package is used in a product, Eric Young should be given attribution * as the author of the parts of the library used. * This can be in the form of a textual message at program startup or * in documentation (online or textual) provided with the package. *  * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the copyright *    notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright *    notice, this list of conditions and the following disclaimer in the *    documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software *    must display the following acknowledgement: *    "This product includes cryptographic software written by *     Eric Young (eay@cryptsoft.com)" *    The word 'cryptographic' can be left out if the rouines from the library *    being used are not cryptographic related :-). * 4. If you include any Windows specific code (or a derivative thereof) from  *    the apps directory (application code) you must include an acknowledgement: *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)" *  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. *  * The licence and distribution terms for any publically available version or * derivative of this code cannot be changed.  i.e. this code cannot simply be * copied and put under another distribution licence * [including the GNU Public Licence.] */#include <stdio.h>#include "bn_lcl.h"#ifdef BN_RECURSION/* Karatsuba recursive multiplication algorithm * (cf. Knuth, The Art of Computer Programming, Vol. 2) *//* r is 2*n2 words in size, * a and b are both n2 words in size. * n2 must be a power of 2. * We multiply and return the result. * t must be 2*n2 words in size * We calculate * a[0]*b[0] * a[0]*b[0]+a[1]*b[1]+(a[0]-a[1])*(b[1]-b[0]) * a[1]*b[1] */void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,	     BN_ULONG *t)	{	int n=n2/2,c1,c2;	unsigned int neg,zero;	BN_ULONG ln,lo,*p;# ifdef BN_COUNT	printf(" bn_mul_recursive %d * %d\n",n2,n2);# endif# ifdef BN_MUL_COMBA#  if 0	if (n2 == 4)		{		bn_mul_comba4(r,a,b);		return;		}#  endif	if (n2 == 8)		{		bn_mul_comba8(r,a,b);		return; 		}# endif /* BN_MUL_COMBA */	if (n2 < BN_MUL_RECURSIVE_SIZE_NORMAL)		{		/* This should not happen */		bn_mul_normal(r,a,n2,b,n2);		return;		}	/* r=(a[0]-a[1])*(b[1]-b[0]) */	c1=bn_cmp_words(a,&(a[n]),n);	c2=bn_cmp_words(&(b[n]),b,n);	zero=neg=0;	switch (c1*3+c2)		{	case -4:		bn_sub_words(t,      &(a[n]),a,      n); /* - */		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */		break;	case -3:		zero=1;		break;	case -2:		bn_sub_words(t,      &(a[n]),a,      n); /* - */		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */		neg=1;		break;	case -1:	case 0:	case 1:		zero=1;		break;	case 2:		bn_sub_words(t,      a,      &(a[n]),n); /* + */		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */		neg=1;		break;	case 3:		zero=1;		break;	case 4:		bn_sub_words(t,      a,      &(a[n]),n);		bn_sub_words(&(t[n]),&(b[n]),b,      n);		break;		}# ifdef BN_MUL_COMBA	if (n == 4)		{		if (!zero)			bn_mul_comba4(&(t[n2]),t,&(t[n]));		else			memset(&(t[n2]),0,8*sizeof(BN_ULONG));				bn_mul_comba4(r,a,b);		bn_mul_comba4(&(r[n2]),&(a[n]),&(b[n]));		}	else if (n == 8)		{		if (!zero)			bn_mul_comba8(&(t[n2]),t,&(t[n]));		else			memset(&(t[n2]),0,16*sizeof(BN_ULONG));				bn_mul_comba8(r,a,b);		bn_mul_comba8(&(r[n2]),&(a[n]),&(b[n]));		}	else# endif /* BN_MUL_COMBA */		{		p= &(t[n2*2]);		if (!zero)			bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);		else			memset(&(t[n2]),0,n2*sizeof(BN_ULONG));		bn_mul_recursive(r,a,b,n,p);		bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),n,p);		}	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign	 * r[10] holds (a[0]*b[0])	 * r[32] holds (b[1]*b[1])	 */	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));	if (neg) /* if t[32] is negative */		{		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));		}	else		{		/* Might have a carry */		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));		}	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])	 * r[10] holds (a[0]*b[0])	 * r[32] holds (b[1]*b[1])	 * c1 holds the carry bits	 */	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));	if (c1)		{		p= &(r[n+n2]);		lo= *p;		ln=(lo+c1)&BN_MASK2;		*p=ln;		/* The overflow will stop before we over write		 * words we should not overwrite */		if (ln < (BN_ULONG)c1)			{			do	{				p++;				lo= *p;				ln=(lo+1)&BN_MASK2;				*p=ln;				} while (ln == 0);			}		}	}/* n+tn is the word length * t needs to be n*4 is size, as does r */void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int tn,	     int n, BN_ULONG *t)	{	int i,j,n2=n*2;	unsigned int c1,c2,neg,zero;	BN_ULONG ln,lo,*p;# ifdef BN_COUNT	printf(" bn_mul_part_recursive %d * %d\n",tn+n,tn+n);# endif	if (n < 8)		{		i=tn+n;		bn_mul_normal(r,a,i,b,i);		return;		}	/* r=(a[0]-a[1])*(b[1]-b[0]) */	c1=bn_cmp_words(a,&(a[n]),n);	c2=bn_cmp_words(&(b[n]),b,n);	zero=neg=0;	switch (c1*3+c2)		{	case -4:		bn_sub_words(t,      &(a[n]),a,      n); /* - */		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */		break;	case -3:		zero=1;		/* break; */	case -2:		bn_sub_words(t,      &(a[n]),a,      n); /* - */		bn_sub_words(&(t[n]),&(b[n]),b,      n); /* + */		neg=1;		break;	case -1:	case 0:	case 1:		zero=1;		/* break; */	case 2:		bn_sub_words(t,      a,      &(a[n]),n); /* + */		bn_sub_words(&(t[n]),b,      &(b[n]),n); /* - */		neg=1;		break;	case 3:		zero=1;		/* break; */	case 4:		bn_sub_words(t,      a,      &(a[n]),n);		bn_sub_words(&(t[n]),&(b[n]),b,      n);		break;		}		/* The zero case isn't yet implemented here. The speedup		   would probably be negligible. */# if 0	if (n == 4)		{		bn_mul_comba4(&(t[n2]),t,&(t[n]));		bn_mul_comba4(r,a,b);		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));		}	else# endif	if (n == 8)		{		bn_mul_comba8(&(t[n2]),t,&(t[n]));		bn_mul_comba8(r,a,b);		bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);		memset(&(r[n2+tn*2]),0,sizeof(BN_ULONG)*(n2-tn*2));		}	else		{		p= &(t[n2*2]);		bn_mul_recursive(&(t[n2]),t,&(t[n]),n,p);		bn_mul_recursive(r,a,b,n,p);		i=n/2;		/* If there is only a bottom half to the number,		 * just do it */		j=tn-i;		if (j == 0)			{			bn_mul_recursive(&(r[n2]),&(a[n]),&(b[n]),i,p);			memset(&(r[n2+i*2]),0,sizeof(BN_ULONG)*(n2-i*2));			}		else if (j > 0) /* eg, n == 16, i == 8 and tn == 11 */				{				bn_mul_part_recursive(&(r[n2]),&(a[n]),&(b[n]),					j,i,p);				memset(&(r[n2+tn*2]),0,					sizeof(BN_ULONG)*(n2-tn*2));				}		else /* (j < 0) eg, n == 16, i == 8 and tn == 5 */			{			memset(&(r[n2]),0,sizeof(BN_ULONG)*n2);			if (tn < BN_MUL_RECURSIVE_SIZE_NORMAL)				{				bn_mul_normal(&(r[n2]),&(a[n]),tn,&(b[n]),tn);				}			else				{				for (;;)					{					i/=2;					if (i < tn)						{						bn_mul_part_recursive(&(r[n2]),							&(a[n]),&(b[n]),							tn-i,i,p);						break;						}					else if (i == tn)						{						bn_mul_recursive(&(r[n2]),							&(a[n]),&(b[n]),							i,p);						break;						}					}				}			}		}	/* t[32] holds (a[0]-a[1])*(b[1]-b[0]), c1 is the sign	 * r[10] holds (a[0]*b[0])	 * r[32] holds (b[1]*b[1])	 */	c1=(int)(bn_add_words(t,r,&(r[n2]),n2));	if (neg) /* if t[32] is negative */		{		c1-=(int)(bn_sub_words(&(t[n2]),t,&(t[n2]),n2));		}	else		{		/* Might have a carry */		c1+=(int)(bn_add_words(&(t[n2]),&(t[n2]),t,n2));		}	/* t[32] holds (a[0]-a[1])*(b[1]-b[0])+(a[0]*b[0])+(a[1]*b[1])	 * r[10] holds (a[0]*b[0])	 * r[32] holds (b[1]*b[1])	 * c1 holds the carry bits	 */	c1+=(int)(bn_add_words(&(r[n]),&(r[n]),&(t[n2]),n2));	if (c1)		{		p= &(r[n+n2]);		lo= *p;		ln=(lo+c1)&BN_MASK2;		*p=ln;		/* The overflow will stop before we over write		 * words we should not overwrite */		if (ln < c1)			{			do	{				p++;				lo= *p;				ln=(lo+1)&BN_MASK2;				*p=ln;				} while (ln == 0);			}		}	}/* a and b must be the same size, which is n2. * r needs to be n2 words and t needs to be n2*2 */void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2,	     BN_ULONG *t)	{	int n=n2/2;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -