⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsarma.m

📁 谱估计及阵列信号处理算法仿真库
💻 M
字号:
function [a,b,sig2]=lsarma(y,n,m,K)%% The two-stage Least-Squares ARMA method % given in section (3.7.2)%% [a,b,sig2]=lsarma(y,n,m,K);% %      y     -> the data vector%      n     -> AR model order%      m     -> MA model order%      K     -> the order of the truncated AR model %      a     <- the AR coefficient vector%      b     <- the MA coefficient vector%      sig2  <- the noise variance%% Copyright 1996 by R. Mosesy=y(:);N=length(y);             % data lengthL=K+m;% N-L should be >= n+mif (N-L) < n+m | K>=N/2-1,  error('K is too large');end% estimate alpha coefficients alpha=lsar(y,K);  % estimate the noise sequence e(t)e=filter(alpha,1,y);       % construct the z vector and Z matrix in equations (3.7.12) and (3.7.13)z=[y(L+1:N)];Z=[toeplitz(y(L:N-1),y(L:-1:L-n+1).'),-1*toeplitz(e(L:N-1),e(L:-1:K+1).')];% estimate theta (a,b)theta=-Z\z;a=[1;theta(1:n)];b=[1;theta(n+1:m+n)];% estimate the noise covariancesig2=norm(Z*theta+z)^2/(N-L);

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -