📄 minnorm.m
字号:
function w=minnorm(y,n,m)%% The Root Min-Norm frequency estimator.%% w=minnorm(y,n,m);%% y -> the data vector% n -> the model order% m -> the order of the covariance matrix in (4.5.14)% w <- the frequency estimates%% Copyright 1996 by R. Mosesy=y(:);N=length(y); % data length% compute the sample covariance matrixR=zeros(m,m);for i = m : N, R=R+y(i:-1:i-m+1)*y(i:-1:i-m+1)'/N;end% to use the forward-backward approach, uncomment the next line% R=(R+fliplr(eye(m))*R.'*fliplr(eye(m)))/2;% get the eigendecomposition of R; use svd because it sorts eigenvalues[U,D,V]=svd(R);S=U(:,1:n);alpha = S(1,:)';Sbar = S(2:m,:);if norm(alpha) ~=1, g = - Sbar * alpha / (1-alpha'*alpha);else, error('The min-norm solution does not exist');end% find the n roots of the a polynomial that are nearest the unit circle,ra= conj(roots([1;g]));% pick the n roots that are closest to the unit circle[dumm,I]=sort(abs(abs(ra)-1));w=angle(ra(I(1:n)));
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -