⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsar.m

📁 谱估计及阵列信号处理算法仿真库
💻 M
字号:
function [a,sig2]=lsar(y,n)%% The Least-Squares AR method (the covariance method)% given by equation (3.4.14) with N1=n+1 and N2=N.%% call [a,sig2]=lsar(y,n);% %      y    -> the data vector%      n    -> AR model order%      a    <- the AR coefficient vector estimate%      sig2 <- the white noise variance estimate% Copyright 1996 by R. Mosesy=y(:);N=length(y);             % data length% compute the standard biased ACS estimate [r(0) r(1) r(2) ...r(n)]if (N <= n)   disp('Error: the AR model order is greater than or equal to the data length.');   returnendr=zeros(n+1,1);for i = 0 : n,   r(i+1)=y(1:N-i)'*y(i+1:N)/N;end% form the y vector and Y matrix given in equation (3.4.14)% with the first and the last n rows removedy1=[y(n+1:N)];Y1=toeplitz(y(n:N-1),y(n:-1:1).');% compute the AR coffecientsa= -Y1\y1;% compute the noise variancesig2=norm(Y1*a+y1)^2/(N-n);a=[1;a];

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -