📄 lsar.m
字号:
function [a,sig2]=lsar(y,n)%% The Least-Squares AR method (the covariance method)% given by equation (3.4.14) with N1=n+1 and N2=N.%% call [a,sig2]=lsar(y,n);% % y -> the data vector% n -> AR model order% a <- the AR coefficient vector estimate% sig2 <- the white noise variance estimate% Copyright 1996 by R. Mosesy=y(:);N=length(y); % data length% compute the standard biased ACS estimate [r(0) r(1) r(2) ...r(n)]if (N <= n) disp('Error: the AR model order is greater than or equal to the data length.'); returnendr=zeros(n+1,1);for i = 0 : n, r(i+1)=y(1:N-i)'*y(i+1:N)/N;end% form the y vector and Y matrix given in equation (3.4.14)% with the first and the last n rows removedy1=[y(n+1:N)];Y1=toeplitz(y(n:N-1),y(n:-1:1).');% compute the AR coffecientsa= -Y1\y1;% compute the noise variancesig2=norm(Y1*a+y1)^2/(N-n);a=[1;a];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -