⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 modulation.m

📁 模拟调制程序
💻 M
字号:

function varargout = Analog_Modulation(varargin)
% ANALOG_MODULATION M-file for Analog_Modulation.fig
%      ANALOG_MODULATION, by itself, creates a new ANALOG_MODULATION or raises the existing
%      singleton*.
%
%      H = ANALOG_MODULATION returns the handle to a new ANALOG_MODULATION or the handle to
%      the existing singleton*.
%
%      ANALOG_MODULATION('CALLBACK',hObject,eventData,handles,...) calls the local
%      function named CALLBACK in ANALOG_MODULATION.M with the given input arguments.
%
%      ANALOG_MODULATION('Property','Value',...) creates a new ANALOG_MODULATION or raises the
%      existing singleton*.  Starting from the left, property value pairs are
%      applied to the GUI before Analog_Modulation_OpeningFunction gets called.  An
%      unrecognized property name or invalid value makes property application
%      stop.  All inputs are passed to Analog_Modulation_OpeningFcn via varargin.
%
%      *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one
%      instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Copyright 2002-2003 The MathWorks, Inc.

% Edit the above text to modify the response to help Analog_Modulation

% Last Modified by GUIDE v2.5 15-Oct-2008 11:36:41

% Author: Alain DEMANGE, alain.demange@eseo.fr

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name',       mfilename, ...
                   'gui_Singleton',  gui_Singleton, ...
                   'gui_OpeningFcn', @Analog_Modulation_OpeningFcn, ...
                   'gui_OutputFcn',  @Analog_Modulation_OutputFcn, ...
                   'gui_LayoutFcn',  [] , ...
                   'gui_Callback',   []);
if nargin && ischar(varargin{1})
    gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
    gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT


% --- Executes just before Analog_Modulation is made visible.
function Analog_Modulation_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)
% varargin   command line arguments to Analog_Modulation (see VARARGIN)

% Choose default command line output for Analog_Modulation
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes Analog_Modulation wait for user response (see UIRESUME)
% uiwait(handles.figure1);


% --- Outputs from this function are returned to the command line.
function varargout = Analog_Modulation_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT);
% hObject    handle to figure
% eventdata  reserved - to be defined in a future version of MATLAB
% handles    structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

%-----------------------------------------------------------------------------------%

%-------------------------------INITIAL SETTINGS------------------------------------%
set(handles.modChoice,'Value',1)    % Modulation set to DSB-SC 
set(handles.modParam,'Visible','Off');
set(handles.text21,'Visible','Off');
set(handles.demodMethod,'Value',1)  % Demodulation set to Coherent
set(handles.text14,'Visible','On');
set(handles.DemodSetting_1,'Visible','On');
set(handles.text13,'Visible','On');
set(handles.DemodSetting_2,'Visible','On');
set(handles.PLLOutputFilter,'Visible','Off');
set(handles.noiseConfToggle,'Value',1); %  SNR noise mode entry setting
set(handles.noiseConfToggle,'String','Signal to noise ratio selected');
set(handles.ampLimit,'Value',0);                % Magnitude clipping not enable
set(handles.soundCommand,'Visible','Off');      % Not yet file to sound!
set(handles.plotCommand,'Visible','Off');       % Not yet results to plot!
set(handles.mainButton,'Visible','Off');        % Not yet .wav file selected!
set(handles.ValidityResults,'Visible','Off');
set(handles.LFgenSelection,'Value',1);          % Sine LF generator selected
sineLFGenParamVisibility(handles)               % Display sine LF generator settings windows

% Run transmission process indicator
Busy = 0; 
handles.Busy = Busy;

% Initialize "modifications flag" in order to indicate if some configuration
% parameters have been modified after the last transmission simulation.
firstSettingsFlag =1;
handles.firstSettingsFlag = firstSettingsFlag;
guidata(hObject,handles);

% Load file listbox from initial directory
initial_dir = pwd;  
load_listbox(initial_dir,handles)

%---------------------------------MAIN FUNCTION6------------------------------------%

% --- Executes on button press in mainButton.
function mainButton_Callback(hObject, eventdata, handles)

% Prepare the window which displays required results after simulations. 
figure(1)
set(gcf,'Name','Results')
set(gcf,'Visible','Off');
set(handles.soundCommand,'Visible','Off');      
set(handles.plotCommand,'Visible','Off');
set(handles.ValidityResults,'Visible','Off');

% verify if simulation is not already running and modify mainButton color if
% necessary
Busy = handles.Busy;
if Busy == 1
    return
end
Busy = 1;
firstSettingsFlag = 0;
handles.firstSettingsFlag = firstSettingsFlag;
set(handles.mainButton,'Backgroundcolor',[1 0 0]);
set(handles.mainButton,'String','Busy!');
 
pause(0.1)


% Read configuration values
Fs_min = str2double(get(handles.minFreq,'String')); %Initial variables settings
Fs_max = str2double(get(handles.maxFreq,'String'));
Fp = str2double(get(handles.carrierFreq,'String'));
A0 = str2double(get(handles.A0,'String'));
Clip_Lvl = str2double(get(handles.clipLvl,'String'));
Gain = str2double(get(handles.Gain,'String'));
Phi_error = eval(get(handles.DemodSetting_1,'String'));
F_error = eval(get(handles.DemodSetting_2,'String'));
k_fad = str2double(get(handles.k_fad,'String'));
NF = str2double(get(handles.NF,'String'));
SNR = str2double(get(handles.SNR,'String'));

% Select sources data
if get(handles.toggleSource,'Value') == 0
    Fes = handles.Fes;              % Audio source data
    S_primaire = handles.S_primaire;%
    k = ceil(str2double(get(handles.CarrierSampFactIn,'String')) ...
        *(Fp + str2double(get(handles.SourceSampFactorIn,'String'))*Fs_max)/Fes); % Upsample factor                               
    Fesim = k*Fes;                  % Simulation sample frequency
    handles.Fesim = Fesim;
    Sequence = repmat(S_primaire',k,1);
    Sequence = Sequence (:);
    clear k;
else                           
    switch(get(handles.LFgenSelection,'Value'))
        case 1  % Single Tone generator
            Fesim = str2double(get(handles.CarrierSampFactIn,'String')) ...
                *(Fp + str2double(get(handles.LFgenFrequency,'String'))); % Simulation sample frequency
            samplePerPeriod = ceil(Fesim/str2double(get(handles.LFgenFrequency,'String')));
            outLFGen = 0.5*str2double(get(handles.LFgenLevel,'String')) ...
                *cos(2*pi*str2double(get(handles.LFgenFrequency,'String'))*[0:samplePerPeriod-1]/Fesim);
            outLFGen = repmat(outLFGen',str2double(get(handles.LFgenPeriods,'String')),1);

        case 2  % Rectangular/ sawtooth generator
            Fesim = str2double(get(handles.CarrierSampFactIn,'String')) ...
                *(Fp + str2double(get(handles.SourceSampFactorIn,'String')) ...
                *str2double(get(handles.LFgenFrequency,'String'))); % Simulation sample frequency
            minAmp = str2double(get(handles.LFgenOffset,'String')) - str2double(get(handles.LFgenLevel,'String'))/2;
            maxAmp = str2double(get(handles.LFgenOffset,'String')) + str2double(get(handles.LFgenLevel,'String'))/2;
            riseTime = eval(get(handles.LFgenParam_4,'String'));
            fallTime = eval(get(handles.LFgenParam_5,'String'));
            widthHigh = eval(get(handles.LFgenParam_6,'String'));
            period = 1/(str2double(get(handles.LFgenFrequency,'String')));
            periodNumber = str2double(get(handles.LFgenPeriods,'String'));
            
            if (riseTime+fallTime+widthHigh) > period
                errordlg('Erreur: Risetime+Falltime+Width > 1/frequency', ...
                    'Input value error')
                return
            end

            if riseTime == 0
                risePart = maxAmp;
            else
                delta = (maxAmp - minAmp)/round(riseTime*Fesim);
                risePart = [minAmp:delta:maxAmp];
            end

            highPart = maxAmp*ones(1,round(widthHigh*Fesim));

            if fallTime == 0
                fallPart = minAmp;
            else
                delta = (maxAmp - minAmp)/round(fallTime*Fesim);
                fallPart = [maxAmp:-delta:minAmp];
            end
            lowPart = minAmp*ones(1,(round(period*Fesim)- length(risePart) - length(highPart) - length(fallPart)));
            baseSignal = [risePart highPart fallPart lowPart];
            outLFGen  = repmat(baseSignal',periodNumber,1);
            clear baseSignal risePart highPart fallPart lowPart period delta maxAmp;
            clear minAmp widthHigh period periodNumber riseTime fallTime;
            
        case 3 % m-ary NRZ random sequence
            Fesim = str2double(get(handles.CarrierSampFactIn,'String')) ...
                *(Fp + str2double(get(handles.LFgenFrequency,'String'))); % Simulation sample frequency
            samplePerPeriod = ceil(Fesim/str2double(get(handles.LFgenFrequency,'String')));
            periodNumber = str2double(get(handles.LFgenPeriods,'String'));
            stateNumber = str2double(get(handles.LFgenParam_4,'String'));
            if sum(factor(stateNumber)~=2)~=0;
                errordlg('The number of state/symbole is not a power of two','Value error')
            end
            %outLFGen = 2*randint(1,periodNumber,stateNumber)-stateNumber+1;
            outLFGen = 2*floor(stateNumber*rand(1,periodNumber))-stateNumber+1;
            outLFGen = repmat(outLFGen,samplePerPeriod,1);
            outLFGen = outLFGen(:);
            magFactor = str2double(get(handles.LFgenLevel,'String'))/(2*(stateNumber-1));
            outLFGen = outLFGen*magFactor + str2double(get(handles.LFgenOffset,'String'));
            clear magFactor stateNumber samplePerPeriod periodNumber;
        case 4 % Uniformly distributed number in range "level"
            Fesim = str2double(get(handles.CarrierSampFactIn,'String'))*Fp;
            outLFGen = rand(str2double(get(handles.LFgenOffset,'String')),1)-0.5;
            outLFGen = str2double(get(handles.LFgenLevel,'String'))*outLFGen;
            
    end 
    handles.Fesim = Fesim;
    Sequence =outLFGen;
    clear outLFGen;
end


t=[1:numel(Sequence)]/Fesim;     % Time vector
handles.time = t;


Original_sequence = Sequence;    % Primary source copy in order to eventualy display it.
handles.Original_sequence = Original_sequence;


% Source frequency band reduction if required
if get(handles.SourceFreqControlValidation, 'Value') == 1
    if get(handles.MatlabModulestoggle,'Value') == 0
        if str2double(get(handles.minFreq,'String')) == 0
            num =0.5*firFilter(-Fs_max,Fs_max,30,Fesim,'Blackman',handles);
        else
            num =firFilter(Fs_min,Fs_max,30,Fesim,'Blackman',handles);
        end
        den = 1;
    else
        if str2double(get(handles.minFreq,'String')) ~= 0
            [num,den] = cheby1(6,1,2*Fs_min/Fesim,'high');  % High pass filter
            Sequence = filter (num,den,Sequence);
        else
            [num,den] = ellip(7,1,60,2*Fs_max/Fesim);       % Low pass filter coefficients
        end
    end
    Filtered_Sequence = filter (num,den,Sequence);
    clear num den Sequence;
else
    Filtered_Sequence = Sequence;
end
clear Sequence;
handles.Filtered_Sequence = Filtered_Sequence;


% Carrier modulation
switch(get(handles.modChoice,'Value'))
    case 1 % DSB-SC
        envelope = Filtered_Sequence*A0;
        Out_EX = envelope .* cos(2*pi*Fp.*t') ; 
    case 2 % DSB-TC
        ka = str2double(get(handles.modParam,'String'));
        envelope = (1+ka*Filtered_Sequence)*A0;
        Out_EX = envelope .* cos(2*pi*Fp.*t') ;
    case 3 % SSB-USB (Weaver method)
        F1 = (Fs_min +Fs_max)/2; % Center frequency of baseband signal for second mixer        
        [envelope Out_EX] = VeawerSSB(1,Filtered_Sequence,(Fs_min +Fs_max)/2,Fp,A0,Fesim,t,handles);     
    case 4 % SSB-LSB (Weaver method)
        F1 = (Fs_min +Fs_max)/2; % Center frequency of baseband signal for second mixer        
        [envelope Out_EX] = VeawerSSB(-1,Filtered_Sequence,(Fs_min +Fs_max)/2,Fp,A0,Fesim,t,handles);
    case 5 % VSB-USB
        envelope = Filtered_Sequence*A0; % Improper designation here but easy for future plot 
        [Out_EX] = RF_VSB(1,7,Filtered_Sequence,Fp,A0,Fesim,t,handles);   
    case 6 % VSB-LSB
         envelope = Filtered_Sequence*A0; % Improper designation here but easy for future plot 
        [Out_EX] = RF_VSB(-1,7,Filtered_Sequence,Fp,A0,Fesim,t,handles);        
    case 7 % FM using VCO structure
        envelope = Filtered_Sequence*A0; % Improper designation here but easy for future plot 
        Alpha =str2double(get(handles.modParam,'String')); % VCO frequency slope 
        SumSequence = mod((2*pi*cumsum(Fp + Alpha*Filtered_Sequence)/Fesim),2*pi); %g閚閞ation de la phase 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -