⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 onepassdataindexer.java

📁 最大熵分类器
💻 JAVA
字号:
///////////////////////////////////////////////////////////////////////////////// Copyright (C) 2001 Jason Baldridge and Gann Bierner//// This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.//// This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the// GNU General Public License for more details.//// You should have received a copy of the GNU Lesser General Public// License along with this program; if not, write to the Free Software// Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.//////////////////////////////////////////////////////////////////////////////   package opennlp.maxent;import gnu.trove.TIntArrayList;import gnu.trove.TLinkedList;import gnu.trove.TObjectIntHashMap;import java.util.ArrayList;import java.util.Arrays;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Set;/** * An indexer for maxent model data which handles cutoffs for uncommon * contextual predicates and provides a unique integer index for each of the * predicates.  * * @author      Jason Baldridge * @version $Revision: 1.5 $, $Date: 2007/03/15 04:51:26 $ */public class OnePassDataIndexer extends AbstractDataIndexer  {    /**     * One argument constructor for DataIndexer which calls the two argument     * constructor assuming no cutoff.     *     * @param eventStream An Event[] which contains the a list of all the Events     *               seen in the training data.     */         public OnePassDataIndexer(EventStream eventStream) {        this(eventStream, 0);    }    /**     * Two argument constructor for DataIndexer.     *     * @param eventStream An Event[] which contains the a list of all the Events     *               seen in the training data.     * @param cutoff The minimum number of times a predicate must have been     *               observed in order to be included in the model.     */    public OnePassDataIndexer(EventStream eventStream, int cutoff) {        TObjectIntHashMap predicateIndex;        TLinkedList events;        List eventsToCompare;        predicateIndex = new TObjectIntHashMap();        System.out.println("Indexing events using cutoff of " + cutoff + "\n");        System.out.print("\tComputing event counts...  ");        events = computeEventCounts(eventStream,predicateIndex,cutoff);        System.out.println("done. "+events.size()+" events");        System.out.print("\tIndexing...  ");        eventsToCompare = index(events,predicateIndex);        // done with event list        events = null;        // done with predicates        predicateIndex = null;        System.out.println("done.");        System.out.print("Sorting and merging events... ");        sortAndMerge(eventsToCompare);        System.out.println("Done indexing.");    }        /**     * Reads events from <tt>eventStream</tt> into a linked list.  The     * predicates associated with each event are counted and any which     * occur at least <tt>cutoff</tt> times are added to the     * <tt>predicatesInOut</tt> map along with a unique integer index.     *     * @param eventStream an <code>EventStream</code> value     * @param predicatesInOut a <code>TObjectIntHashMap</code> value     * @param cutoff an <code>int</code> value     * @return a <code>TLinkedList</code> value     */    private TLinkedList computeEventCounts(EventStream eventStream,        TObjectIntHashMap predicatesInOut,        int cutoff) {      Set predicateSet = new HashSet();      TObjectIntHashMap counter = new TObjectIntHashMap();      TLinkedList events = new TLinkedList();      while (eventStream.hasNext()) {        Event ev = eventStream.nextEvent();        events.addLast(ev);        update(ev.getContext(),predicateSet,counter,cutoff);      }      predCounts = new int[predicateSet.size()];      int index = 0;      for (Iterator pi=predicateSet.iterator();pi.hasNext();index++) {        String predicate = (String) pi.next();        predCounts[index] = counter.get(predicate);        predicatesInOut.put(predicate,index);      }      return events;    }    protected List index(TLinkedList events,                       TObjectIntHashMap predicateIndex) {        TObjectIntHashMap omap = new TObjectIntHashMap();        int numEvents = events.size();        int outcomeCount = 0;        List eventsToCompare = new ArrayList(numEvents);        TIntArrayList indexedContext = new TIntArrayList();        for (int eventIndex=0; eventIndex<numEvents; eventIndex++) {            Event ev = (Event)events.removeFirst();            String[] econtext = ev.getContext();            ComparableEvent ce;	                int ocID;            String oc = ev.getOutcome();	                if (omap.containsKey(oc)) {                ocID = omap.get(oc);            } else {                ocID = outcomeCount++;                omap.put(oc, ocID);            }            for (int i=0; i<econtext.length; i++) {                String pred = econtext[i];                if (predicateIndex.containsKey(pred)) {                    indexedContext.add(predicateIndex.get(pred));                }            }            // drop events with no active features            if (indexedContext.size() > 0) {                ce = new ComparableEvent(ocID, indexedContext.toNativeArray());                eventsToCompare.add(ce);            }            else {              System.err.println("Dropped event "+ev.getOutcome()+":"+Arrays.asList(ev.getContext()));            }            // recycle the TIntArrayList            indexedContext.resetQuick();        }        outcomeLabels = toIndexedStringArray(omap);        predLabels = toIndexedStringArray(predicateIndex);        return eventsToCompare;    }    }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -