📄 twopassdataindexer.java
字号:
/////////////////////////////////////////////////////////////////////////////////Copyright (C) 2003 Thomas Morton////This library is free software; you can redistribute it and/or//modify it under the terms of the GNU Lesser General Public//License as published by the Free Software Foundation; either//version 2.1 of the License, or (at your option) any later version.////This library is distributed in the hope that it will be useful,//but WITHOUT ANY WARRANTY; without even the implied warranty of//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the//GNU General Public License for more details.////You should have received a copy of the GNU Lesser General Public//License along with this program; if not, write to the Free Software//Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.////////////////////////////////////////////////////////////////////////////// package opennlp.maxent;import gnu.trove.TIntArrayList;import gnu.trove.TObjectIntHashMap;import java.io.BufferedWriter;import java.io.File;import java.io.FileOutputStream;import java.io.IOException;import java.io.OutputStreamWriter;import java.io.Writer;import java.util.ArrayList;import java.util.Arrays;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Set;/** * Collecting event and context counts by making two passes over the events. The * first pass determines which contexts will be used by the model, and the * second pass creates the events in memory containing only the contexts which * will be used. This greatly reduces the amount of memory required for storing * the events. During the first pass a temporary event file is created which * is read during the second pass. */public class TwoPassDataIndexer extends AbstractDataIndexer{ /** * One argument constructor for DataIndexer which calls the two argument * constructor assuming no cutoff. * * @param eventStream An Event[] which contains the a list of all the Events * seen in the training data. */ public TwoPassDataIndexer(EventStream eventStream) throws IOException { this(eventStream, 0); } /** * Two argument constructor for DataIndexer. * * @param eventStream An Event[] which contains the a list of all the Events * seen in the training data. * @param cutoff The minimum number of times a predicate must have been * observed in order to be included in the model. */ public TwoPassDataIndexer(EventStream eventStream, int cutoff) throws IOException { TObjectIntHashMap predicateIndex; List eventsToCompare; predicateIndex = new TObjectIntHashMap(); System.out.println("Indexing events using cutoff of " + cutoff + "\n"); System.out.print("\tComputing event counts... "); try { File tmp = File.createTempFile("events", null); tmp.deleteOnExit(); Writer osw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(tmp),"UTF8")); int numEvents = computeEventCounts(eventStream, osw, predicateIndex, cutoff); System.out.println("done. " + numEvents + " events"); System.out.print("\tIndexing... "); eventsToCompare = index(numEvents, new FileEventStream(tmp), predicateIndex); // done with predicates predicateIndex = null; tmp.delete(); System.out.println("done."); System.out.print("Sorting and merging events... "); sortAndMerge(eventsToCompare); System.out.println("Done indexing."); } catch(IOException e) { System.err.println(e); } } /** * Reads events from <tt>eventStream</tt> into a linked list. The * predicates associated with each event are counted and any which * occur at least <tt>cutoff</tt> times are added to the * <tt>predicatesInOut</tt> map along with a unique integer index. * * @param eventStream an <code>EventStream</code> value * @param eventStore a writer to which the events are written to for later processing. * @param predicatesInOut a <code>TObjectIntHashMap</code> value * @param cutoff an <code>int</code> value */ private int computeEventCounts(EventStream eventStream, Writer eventStore, TObjectIntHashMap predicatesInOut, int cutoff) throws IOException { TObjectIntHashMap counter = new TObjectIntHashMap(); int eventCount = 0; Set predicateSet = new HashSet(); while (eventStream.hasNext()) { Event ev = eventStream.nextEvent(); eventCount++; eventStore.write(FileEventStream.toLine(ev)); String[] ec = ev.getContext(); update(ec,predicateSet,counter,cutoff); } predCounts = new int[predicateSet.size()]; int index = 0; for (Iterator pi=predicateSet.iterator();pi.hasNext();index++) { String predicate = (String) pi.next(); predCounts[index] = counter.get(predicate); predicatesInOut.put(predicate,index); } eventStore.close(); return eventCount; } private List index(int numEvents, EventStream es, TObjectIntHashMap predicateIndex) { TObjectIntHashMap omap = new TObjectIntHashMap(); int outcomeCount = 0; List eventsToCompare = new ArrayList(numEvents); TIntArrayList indexedContext = new TIntArrayList(); while (es.hasNext()) { Event ev = es.nextEvent(); String[] econtext = ev.getContext(); ComparableEvent ce; int ocID; String oc = ev.getOutcome(); if (omap.containsKey(oc)) { ocID = omap.get(oc); } else { ocID = outcomeCount++; omap.put(oc, ocID); } for (int i = 0; i < econtext.length; i++) { String pred = econtext[i]; if (predicateIndex.containsKey(pred)) { indexedContext.add(predicateIndex.get(pred)); } } // drop events with no active features if (indexedContext.size() > 0) { ce = new ComparableEvent(ocID, indexedContext.toNativeArray()); eventsToCompare.add(ce); } else { System.err.println("Dropped event " + ev.getOutcome() + ":" + Arrays.asList(ev.getContext())); } // recycle the TIntArrayList indexedContext.resetQuick(); } outcomeLabels = toIndexedStringArray(omap); predLabels = toIndexedStringArray(predicateIndex); return eventsToCompare; }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -