⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 twopassdataindexer.java

📁 最大熵分类器
💻 JAVA
字号:
/////////////////////////////////////////////////////////////////////////////////Copyright (C) 2003 Thomas Morton////This library is free software; you can redistribute it and/or//modify it under the terms of the GNU Lesser General Public//License as published by the Free Software Foundation; either//version 2.1 of the License, or (at your option) any later version.////This library is distributed in the hope that it will be useful,//but WITHOUT ANY WARRANTY; without even the implied warranty of//MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the//GNU General Public License for more details.////You should have received a copy of the GNU Lesser General Public//License along with this program; if not, write to the Free Software//Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.//////////////////////////////////////////////////////////////////////////////   package opennlp.maxent;import gnu.trove.TIntArrayList;import gnu.trove.TObjectIntHashMap;import java.io.BufferedWriter;import java.io.File;import java.io.FileOutputStream;import java.io.IOException;import java.io.OutputStreamWriter;import java.io.Writer;import java.util.ArrayList;import java.util.Arrays;import java.util.HashSet;import java.util.Iterator;import java.util.List;import java.util.Set;/** * Collecting event and context counts by making two passes over the events.  The * first pass determines which contexts will be used by the model, and the * second pass creates the events in memory containing only the contexts which  * will be used.  This greatly reduces the amount of memory required for storing * the events.  During the first pass a temporary event file is created which * is read during the second pass. */public class TwoPassDataIndexer extends AbstractDataIndexer{  /**   * One argument constructor for DataIndexer which calls the two argument   * constructor assuming no cutoff.   *   * @param eventStream An Event[] which contains the a list of all the Events   *               seen in the training data.   */  public TwoPassDataIndexer(EventStream eventStream) throws IOException {    this(eventStream, 0);  }  /**   * Two argument constructor for DataIndexer.   *   * @param eventStream An Event[] which contains the a list of all the Events   *               seen in the training data.   * @param cutoff The minimum number of times a predicate must have been   *               observed in order to be included in the model.   */  public TwoPassDataIndexer(EventStream eventStream, int cutoff) throws IOException {    TObjectIntHashMap predicateIndex;    List eventsToCompare;    predicateIndex = new TObjectIntHashMap();    System.out.println("Indexing events using cutoff of " + cutoff + "\n");    System.out.print("\tComputing event counts...  ");    try {      File tmp = File.createTempFile("events", null);      tmp.deleteOnExit();      Writer osw = new BufferedWriter(new OutputStreamWriter(new FileOutputStream(tmp),"UTF8"));      int numEvents = computeEventCounts(eventStream, osw, predicateIndex, cutoff);      System.out.println("done. " + numEvents + " events");      System.out.print("\tIndexing...  ");      eventsToCompare = index(numEvents, new FileEventStream(tmp), predicateIndex);      // done with predicates      predicateIndex = null;      tmp.delete();      System.out.println("done.");      System.out.print("Sorting and merging events... ");      sortAndMerge(eventsToCompare);      System.out.println("Done indexing.");    }    catch(IOException e) {      System.err.println(e);    }  }  /**      * Reads events from <tt>eventStream</tt> into a linked list.  The      * predicates associated with each event are counted and any which      * occur at least <tt>cutoff</tt> times are added to the      * <tt>predicatesInOut</tt> map along with a unique integer index.      *      * @param eventStream an <code>EventStream</code> value      * @param eventStore a writer to which the events are written to for later processing.      * @param predicatesInOut a <code>TObjectIntHashMap</code> value      * @param cutoff an <code>int</code> value      */  private int computeEventCounts(EventStream eventStream, Writer eventStore, TObjectIntHashMap predicatesInOut, int cutoff) throws IOException {    TObjectIntHashMap counter = new TObjectIntHashMap();    int eventCount = 0;    Set predicateSet = new HashSet();    while (eventStream.hasNext()) {      Event ev = eventStream.nextEvent();      eventCount++;      eventStore.write(FileEventStream.toLine(ev));      String[] ec = ev.getContext();      update(ec,predicateSet,counter,cutoff);    }    predCounts = new int[predicateSet.size()];    int index = 0;    for (Iterator pi=predicateSet.iterator();pi.hasNext();index++) {      String predicate = (String) pi.next();      predCounts[index] = counter.get(predicate);      predicatesInOut.put(predicate,index);    }    eventStore.close();    return eventCount;  }  private List index(int numEvents, EventStream es, TObjectIntHashMap predicateIndex) {    TObjectIntHashMap omap = new TObjectIntHashMap();    int outcomeCount = 0;    List eventsToCompare = new ArrayList(numEvents);    TIntArrayList indexedContext = new TIntArrayList();    while (es.hasNext()) {      Event ev = es.nextEvent();      String[] econtext = ev.getContext();      ComparableEvent ce;      int ocID;      String oc = ev.getOutcome();      if (omap.containsKey(oc)) {        ocID = omap.get(oc);      }      else {        ocID = outcomeCount++;        omap.put(oc, ocID);      }      for (int i = 0; i < econtext.length; i++) {        String pred = econtext[i];        if (predicateIndex.containsKey(pred)) {          indexedContext.add(predicateIndex.get(pred));        }      }      // drop events with no active features      if (indexedContext.size() > 0) {        ce = new ComparableEvent(ocID, indexedContext.toNativeArray());        eventsToCompare.add(ce);      }      else {        System.err.println("Dropped event " + ev.getOutcome() + ":" + Arrays.asList(ev.getContext()));      }      // recycle the TIntArrayList      indexedContext.resetQuick();    }    outcomeLabels = toIndexedStringArray(omap);    predLabels = toIndexedStringArray(predicateIndex);    return eventsToCompare;  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -