📄 bendtorsionstiffnessassemble.m
字号:
% 弯扭耦合分析总刚形成
function y = BendTorsionStiffnessAssemble(K,k,i,j)
K(7*i-6,7*i-6) = K(7*i-6,7*i-6) + k(1,1);
K(7*i-6,7*i-5) = K(7*i-6,7*i-5) + k(1,2);
K(7*i-6,7*i-4) = K(7*i-6,7*i-4) + k(1,3);
K(7*i-6,7*i-3) = K(7*i-6,7*i-3) + k(1,4);
K(7*i-6,7*i-2) = K(7*i-6,7*i-2) + k(1,5);
K(7*i-6,7*i-1) = K(7*i-6,7*i-1) + k(1,6);
K(7*i-6,7*i ) = K(7*i-6,7*i ) + k(1,7);
K(7*i-6,7*j-6) = K(7*i-6,7*j-6) + k(1,8);
K(7*i-6,7*j-5) = K(7*i-6,7*j-5) + k(1,9);
K(7*i-6,7*j-4) = K(7*i-6,7*j-4) + k(1,10);
K(7*i-6,7*j-3) = K(7*i-6,7*j-3) + k(1,11);
K(7*i-6,7*j-2) = K(7*i-6,7*j-2) + k(1,12);
K(7*i-6,7*j-1) = K(7*i-6,7*j-1) + k(1,13);
K(7*i-6,7*j ) = K(7*i-6,7*j ) + k(1,14);
K(7*i-5,7*i-6) = K(7*i-5,7*i-6) + k(2,1);
K(7*i-5,7*i-5) = K(7*i-5,7*i-5) + k(2,2);
K(7*i-5,7*i-4) = K(7*i-5,7*i-4) + k(2,3);
K(7*i-5,7*i-3) = K(7*i-5,7*i-3) + k(2,4);
K(7*i-5,7*i-2) = K(7*i-5,7*i-2) + k(2,5);
K(7*i-5,7*i-1) = K(7*i-5,7*i-1) + k(2,6);
K(7*i-5,7*i ) = K(7*i-5,7*i ) + k(2,7);
K(7*i-5,7*j-6) = K(7*i-5,7*j-6) + k(2,8);
K(7*i-5,7*j-5) = K(7*i-5,7*j-5) + k(2,9);
K(7*i-5,7*j-4) = K(7*i-5,7*j-4) + k(2,10);
K(7*i-5,7*j-3) = K(7*i-5,7*j-3) + k(2,11);
K(7*i-5,7*j-2) = K(7*i-5,7*j-2) + k(2,12);
K(7*i-5,7*j-1) = K(7*i-5,7*j-1) + k(2,13);
K(7*i-5,7*j ) = K(7*i-5,7*j ) + k(2,14);
K(7*i-4,7*i-6) = K(7*i-4,7*i-6) + k(3,1);
K(7*i-4,7*i-5) = K(7*i-4,7*i-5) + k(3,2);
K(7*i-4,7*i-4) = K(7*i-4,7*i-4) + k(3,3);
K(7*i-4,7*i-3) = K(7*i-4,7*i-3) + k(3,4);
K(7*i-4,7*i-2) = K(7*i-4,7*i-2) + k(3,5);
K(7*i-4,7*i-1) = K(7*i-4,7*i-1) + k(3,6);
K(7*i-4,7*i ) = K(7*i-4,7*i ) + k(3,7);
K(7*i-4,7*j-6) = K(7*i-4,7*j-6) + k(3,8);
K(7*i-4,7*j-5) = K(7*i-4,7*j-5) + k(3,9);
K(7*i-4,7*j-4) = K(7*i-4,7*j-4) + k(3,10);
K(7*i-4,7*j-3) = K(7*i-4,7*j-3) + k(3,11);
K(7*i-4,7*j-2) = K(7*i-4,7*j-2) + k(3,12);
K(7*i-4,7*j-1) = K(7*i-4,7*j-1) + k(3,13);
K(7*i-4,7*j ) = K(7*i-4,7*j ) + k(3,14);
K(7*i-3,7*i-6) = K(7*i-3,7*i-6) + k(4,1);
K(7*i-3,7*i-5) = K(7*i-3,7*i-5) + k(4,2);
K(7*i-3,7*i-4) = K(7*i-3,7*i-4) + k(4,3);
K(7*i-3,7*i-3) = K(7*i-3,7*i-3) + k(4,4);
K(7*i-3,7*i-2) = K(7*i-3,7*i-2) + k(4,5);
K(7*i-3,7*i-1) = K(7*i-3,7*i-1) + k(4,6);
K(7*i-3,7*i ) = K(7*i-3,7*i ) + k(4,7);
K(7*i-3,7*j-6) = K(7*i-3,7*j-6) + k(4,8);
K(7*i-3,7*j-5) = K(7*i-3,7*j-5) + k(4,9);
K(7*i-3,7*j-4) = K(7*i-3,7*j-4) + k(4,10);
K(7*i-3,7*j-3) = K(7*i-3,7*j-3) + k(4,11);
K(7*i-3,7*j-2) = K(7*i-3,7*j-2) + k(4,12);
K(7*i-3,7*j-1) = K(7*i-3,7*j-1) + k(4,13);
K(7*i-3,7*j ) = K(7*i-3,7*j ) + k(4,14);
K(7*i-2,7*i-6) = K(7*i-2,7*i-6) + k(5,1);
K(7*i-2,7*i-5) = K(7*i-2,7*i-5) + k(5,2);
K(7*i-2,7*i-4) = K(7*i-2,7*i-4) + k(5,3);
K(7*i-2,7*i-3) = K(7*i-2,7*i-3) + k(5,4);
K(7*i-2,7*i-2) = K(7*i-2,7*i-2) + k(5,5);
K(7*i-2,7*i-1) = K(7*i-2,7*i-1) + k(5,6);
K(7*i-2,7*i ) = K(7*i-2,7*i ) + k(5,7);
K(7*i-2,7*j-6) = K(7*i-2,7*j-6) + k(5,8);
K(7*i-2,7*j-5) = K(7*i-2,7*j-5) + k(5,9);
K(7*i-2,7*j-4) = K(7*i-2,7*j-4) + k(5,10);
K(7*i-2,7*j-3) = K(7*i-2,7*j-3) + k(5,11);
K(7*i-2,7*j-2) = K(7*i-2,7*j-2) + k(5,12);
K(7*i-2,7*j-1) = K(7*i-2,7*j-1) + k(5,13);
K(7*i-2,7*j ) = K(7*i-2,7*j ) + k(5,14);
K(7*i-1,7*i-6) = K(7*i-1,7*i-6) + k(6,1);
K(7*i-1,7*i-5) = K(7*i-1,7*i-5) + k(6,2);
K(7*i-1,7*i-4) = K(7*i-1,7*i-4) + k(6,3);
K(7*i-1,7*i-3) = K(7*i-1,7*i-3) + k(6,4);
K(7*i-1,7*i-2) = K(7*i-1,7*i-2) + k(6,5);
K(7*i-1,7*i-1) = K(7*i-1,7*i-1) + k(6,6);
K(7*i-1,7*i ) = K(7*i-1,7*i ) + k(6,7);
K(7*i-1,7*j-6) = K(7*i-1,7*j-6) + k(6,8);
K(7*i-1,7*j-5) = K(7*i-1,7*j-5) + k(6,9);
K(7*i-1,7*j-4) = K(7*i-1,7*j-4) + k(6,10);
K(7*i-1,7*j-3) = K(7*i-1,7*j-3) + k(6,11);
K(7*i-1,7*j-2) = K(7*i-1,7*j-2) + k(6,12);
K(7*i-1,7*j-1) = K(7*i-1,7*j-1) + k(6,13);
K(7*i-1,7*j ) = K(7*i-1,7*j ) + k(6,14);
K(7*i,7*i-6) = K(7*i,7*i-6) + k(7,1);
K(7*i,7*i-5) = K(7*i,7*i-5) + k(7,2);
K(7*i,7*i-4) = K(7*i,7*i-4) + k(7,3);
K(7*i,7*i-3) = K(7*i,7*i-3) + k(7,4);
K(7*i,7*i-2) = K(7*i,7*i-2) + k(7,5);
K(7*i,7*i-1) = K(7*i,7*i-1) + k(7,6);
K(7*i,7*i ) = K(7*i,7*i ) + k(7,7);
K(7*i,7*j-6) = K(7*i,7*j-6) + k(7,8);
K(7*i,7*j-5) = K(7*i,7*j-5) + k(7,9);
K(7*i,7*j-4) = K(7*i,7*j-4) + k(7,10);
K(7*i,7*j-3) = K(7*i,7*j-3) + k(7,11);
K(7*i,7*j-2) = K(7*i,7*j-2) + k(7,12);
K(7*i,7*j-1) = K(7*i,7*j-1) + k(7,13);
K(7*i,7*j ) = K(7*i,7*j ) + k(7,14);
K(7*j-6,7*i-6) = K(7*j-6,7*i-6) + k(8,1);
K(7*j-6,7*i-5) = K(7*j-6,7*i-5) + k(8,2);
K(7*j-6,7*i-4) = K(7*j-6,7*i-4) + k(8,3);
K(7*j-6,7*i-3) = K(7*j-6,7*i-3) + k(8,4);
K(7*j-6,7*i-2) = K(7*j-6,7*i-2) + k(8,5);
K(7*j-6,7*i-1) = K(7*j-6,7*i-1) + k(8,6);
K(7*j-6,7*i ) = K(7*j-6,7*i ) + k(8,7);
K(7*j-6,7*j-6) = K(7*j-6,7*j-6) + k(8,8);
K(7*j-6,7*j-5) = K(7*j-6,7*j-5) + k(8,9);
K(7*j-6,7*j-4) = K(7*j-6,7*j-4) + k(8,10);
K(7*j-6,7*j-3) = K(7*j-6,7*j-3) + k(8,11);
K(7*j-6,7*j-2) = K(7*j-6,7*j-2) + k(8,12);
K(7*j-6,7*j-1) = K(7*j-6,7*j-1) + k(8,13);
K(7*j-6,7*j ) = K(7*j-6,7*j ) + k(8,14);
K(7*j-5,7*i-6) = K(7*j-5,7*i-6) + k(9,1);
K(7*j-5,7*i-5) = K(7*j-5,7*i-5) + k(9,2);
K(7*j-5,7*i-4) = K(7*j-5,7*i-4) + k(9,3);
K(7*j-5,7*i-3) = K(7*j-5,7*i-3) + k(9,4);
K(7*j-5,7*i-2) = K(7*j-5,7*i-2) + k(9,5);
K(7*j-5,7*i-1) = K(7*j-5,7*i-1) + k(9,6);
K(7*j-5,7*i ) = K(7*j-5,7*i ) + k(9,7);
K(7*j-5,7*j-6) = K(7*j-5,7*j-6) + k(9,8);
K(7*j-5,7*j-5) = K(7*j-5,7*j-5) + k(9,9);
K(7*j-5,7*j-4) = K(7*j-5,7*j-4) + k(9,10);
K(7*j-5,7*j-3) = K(7*j-5,7*j-3) + k(9,11);
K(7*j-5,7*j-2) = K(7*j-5,7*j-2) + k(9,12);
K(7*j-5,7*j-1) = K(7*j-5,7*j-1) + k(9,13);
K(7*j-5,7*j ) = K(7*j-5,7*j ) + k(9,14);
K(7*j-4,7*i-6) = K(7*j-4,7*i-6) + k(10,1);
K(7*j-4,7*i-5) = K(7*j-4,7*i-5) + k(10,2);
K(7*j-4,7*i-4) = K(7*j-4,7*i-4) + k(10,3);
K(7*j-4,7*i-3) = K(7*j-4,7*i-3) + k(10,4);
K(7*j-4,7*i-2) = K(7*j-4,7*i-2) + k(10,5);
K(7*j-4,7*i-1) = K(7*j-4,7*i-1) + k(10,6);
K(7*j-4,7*i ) = K(7*j-4,7*i ) + k(10,7);
K(7*j-4,7*j-6) = K(7*j-4,7*j-6) + k(10,8);
K(7*j-4,7*j-5) = K(7*j-4,7*j-5) + k(10,9);
K(7*j-4,7*j-4) = K(7*j-4,7*j-4) + k(10,10);
K(7*j-4,7*j-3) = K(7*j-4,7*j-3) + k(10,11);
K(7*j-4,7*j-2) = K(7*j-4,7*j-2) + k(10,12);
K(7*j-4,7*j-1) = K(7*j-4,7*j-1) + k(10,13);
K(7*j-4,7*j ) = K(7*j-4,7*j ) + k(10,14);
K(7*j-3,7*i-6) = K(7*j-3,7*i-6) + k(11,1);
K(7*j-3,7*i-5) = K(7*j-3,7*i-5) + k(11,2);
K(7*j-3,7*i-4) = K(7*j-3,7*i-4) + k(11,3);
K(7*j-3,7*i-3) = K(7*j-3,7*i-3) + k(11,4);
K(7*j-3,7*i-2) = K(7*j-3,7*i-2) + k(11,5);
K(7*j-3,7*i-1) = K(7*j-3,7*i-1) + k(11,6);
K(7*j-3,7*i ) = K(7*j-3,7*i ) + k(11,7);
K(7*j-3,7*j-6) = K(7*j-3,7*j-6) + k(11,8);
K(7*j-3,7*j-5) = K(7*j-3,7*j-5) + k(11,9);
K(7*j-3,7*j-4) = K(7*j-3,7*j-4) + k(11,10);
K(7*j-3,7*j-3) = K(7*j-3,7*j-3) + k(11,11);
K(7*j-3,7*j-2) = K(7*j-3,7*j-2) + k(11,12);
K(7*j-3,7*j-1) = K(7*j-3,7*j-1) + k(11,13);
K(7*j-3,7*j ) = K(7*j-3,7*j ) + k(11,14);
K(7*j-2,7*i-6) = K(7*j-2,7*i-6) + k(12,1);
K(7*j-2,7*i-5) = K(7*j-2,7*i-5) + k(12,2);
K(7*j-2,7*i-4) = K(7*j-2,7*i-4) + k(12,3);
K(7*j-2,7*i-3) = K(7*j-2,7*i-3) + k(12,4);
K(7*j-2,7*i-2) = K(7*j-2,7*i-2) + k(12,5);
K(7*j-2,7*i-1) = K(7*j-2,7*i-1) + k(12,6);
K(7*j-2,7*i ) = K(7*j-2,7*i ) + k(12,7);
K(7*j-2,7*j-6) = K(7*j-2,7*j-6) + k(12,8);
K(7*j-2,7*j-5) = K(7*j-2,7*j-5) + k(12,9);
K(7*j-2,7*j-4) = K(7*j-2,7*j-4) + k(12,10);
K(7*j-2,7*j-3) = K(7*j-2,7*j-3) + k(12,11);
K(7*j-2,7*j-2) = K(7*j-2,7*j-2) + k(12,12);
K(7*j-2,7*j-1) = K(7*j-2,7*j-1) + k(12,13);
K(7*j-2,7*j ) = K(7*j-2,7*j ) + k(12,14);
K(7*j-1,7*i-6) = K(7*j-1,7*i-6) + k(13,1);
K(7*j-1,7*i-5) = K(7*j-1,7*i-5) + k(13,2);
K(7*j-1,7*i-4) = K(7*j-1,7*i-4) + k(13,3);
K(7*j-1,7*i-3) = K(7*j-1,7*i-3) + k(13,4);
K(7*j-1,7*i-2) = K(7*j-1,7*i-2) + k(13,5);
K(7*j-1,7*i-1) = K(7*j-1,7*i-1) + k(13,6);
K(7*j-1,7*i ) = K(7*j-1,7*i ) + k(13,7);
K(7*j-1,7*j-6) = K(7*j-1,7*j-6) + k(13,8);
K(7*j-1,7*j-5) = K(7*j-1,7*j-5) + k(13,9);
K(7*j-1,7*j-4) = K(7*j-1,7*j-4) + k(13,10);
K(7*j-1,7*j-3) = K(7*j-1,7*j-3) + k(13,11);
K(7*j-1,7*j-2) = K(7*j-1,7*j-2) + k(13,12);
K(7*j-1,7*j-1) = K(7*j-1,7*j-1) + k(13,13);
K(7*j-1,7*j ) = K(7*j-1,7*j ) + k(13,14);
K(7*j,7*i-6) = K(7*j,7*i-6) + k(14,1);
K(7*j,7*i-5) = K(7*j,7*i-5) + k(14,2);
K(7*j,7*i-4) = K(7*j,7*i-4) + k(14,3);
K(7*j,7*i-3) = K(7*j,7*i-3) + k(14,4);
K(7*j,7*i-2) = K(7*j,7*i-2) + k(14,5);
K(7*j,7*i-1) = K(7*j,7*i-1) + k(14,6);
K(7*j,7*i ) = K(7*j,7*i ) + k(14,7);
K(7*j,7*j-6) = K(7*j,7*j-6) + k(14,8);
K(7*j,7*j-5) = K(7*j,7*j-5) + k(14,9);
K(7*j,7*j-4) = K(7*j,7*j-4) + k(14,10);
K(7*j,7*j-3) = K(7*j,7*j-3) + k(14,11);
K(7*j,7*j-2) = K(7*j,7*j-2) + k(14,12);
K(7*j,7*j-1) = K(7*j,7*j-1) + k(14,13);
K(7*j,7*j ) = K(7*j,7*j ) + k(14,14);
y = K;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -