📄 mesh_refinement_smoothing.c
字号:
// $Id: mesh_refinement_smoothing.C 2877 2008-06-16 21:34:18Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// Local includes#include "libmesh_config.h"// only compile these functions if the user requests AMR support#ifdef ENABLE_AMR#include "elem.h"#include "mesh_base.h"#include "mesh_refinement.h"#include "parallel.h"#include "remote_elem.h"//-----------------------------------------------------------------// Mesh refinement methodsbool MeshRefinement::limit_level_mismatch_at_node (const unsigned int max_mismatch){ // This function must be run on all processors at once parallel_only(); bool flags_changed = false; // Vector holding the maximum element level that touches a node. std::vector<unsigned char> max_level_at_node (_mesh.n_nodes(), 0); std::vector<unsigned char> max_p_level_at_node (_mesh.n_nodes(), 0); // Loop over all the active elements & fill the vector { MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { const Elem* elem = *elem_it; const unsigned char elem_level = elem->level() + ((elem->refinement_flag() == Elem::REFINE) ? 1 : 0); const unsigned char elem_p_level = elem->p_level() + ((elem->p_refinement_flag() == Elem::REFINE) ? 1 : 0); // Set the max_level at each node for (unsigned int n=0; n<elem->n_nodes(); n++) { const unsigned int node_number = elem->node(n); libmesh_assert (node_number < max_level_at_node.size()); max_level_at_node[node_number] = std::max (max_level_at_node[node_number], elem_level); max_p_level_at_node[node_number] = std::max (max_p_level_at_node[node_number], elem_p_level); } } } // Now loop over the active elements and flag the elements // who violate the requested level mismatch { MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; const unsigned int elem_level = elem->level(); const unsigned int elem_p_level = elem->p_level(); // Skip the element if it is already fully flagged if (elem->refinement_flag() == Elem::REFINE && elem->p_refinement_flag() == Elem::REFINE) continue; // Loop over the nodes, check for possible mismatch for (unsigned int n=0; n<elem->n_nodes(); n++) { const unsigned int node_number = elem->node(n); // Flag the element for refinement if it violates // the requested level mismatch if ( (elem_level + max_mismatch) < max_level_at_node[node_number] && elem->refinement_flag() != Elem::REFINE) { elem->set_refinement_flag (Elem::REFINE); flags_changed = true; } if ( (elem_p_level + max_mismatch) < max_p_level_at_node[node_number] && elem->p_refinement_flag() != Elem::REFINE) { elem->set_p_refinement_flag (Elem::REFINE); flags_changed = true; } } } } // If flags changed on any processor then they changed globally Parallel::max(flags_changed); return flags_changed;}//-----------------------------------------------------------------// Mesh refinement methodsbool MeshRefinement::limit_level_mismatch_at_edge (const unsigned int max_mismatch){ // This function must be run on all processors at once parallel_only(); bool flags_changed = false; // Maps holding the maximum element level that touches an edge std::map<std::pair<unsigned int, unsigned int>, unsigned char> max_level_at_edge; std::map<std::pair<unsigned int, unsigned int>, unsigned char> max_p_level_at_edge; // Loop over all the active elements & fill the maps { MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { const Elem* elem = *elem_it; const unsigned char elem_level = elem->level() + ((elem->refinement_flag() == Elem::REFINE) ? 1 : 0); const unsigned char elem_p_level = elem->p_level() + ((elem->p_refinement_flag() == Elem::REFINE) ? 1 : 0); // Set the max_level at each edge for (unsigned int n=0; n<elem->n_edges(); n++) { AutoPtr<Elem> edge = elem->build_edge(n); unsigned int childnode0 = edge->node(0); unsigned int childnode1 = edge->node(1); if (childnode1 < childnode0) std::swap(childnode0, childnode1); for (const Elem *p = elem; p != NULL; p = elem->parent()) { AutoPtr<Elem> pedge = p->build_edge(n); unsigned int node0 = pedge->node(0); unsigned int node1 = pedge->node(1); // If elem does not share this edge with its ancestor // p, refinement levels of elements sharing p's edge // are not restricted by refinement levels of elem. // Furthermore, elem will not share this edge with any // of p's ancestors, so we can safely break out of the // for loop early. if (node0 != childnode0 && node0 != childnode1 && node1 != childnode0 && node1 != childnode1) break; if (node1 < node0) std::swap(node0, node1); std::pair<unsigned int, unsigned int> edge_key = std::make_pair(node0, node1); if (max_level_at_edge.find(edge_key) == max_level_at_edge.end()) { max_level_at_edge[edge_key] = elem_level; max_p_level_at_edge[edge_key] = elem_p_level; } else { max_level_at_edge[edge_key] = std::max (max_level_at_edge[edge_key], elem_level); max_p_level_at_edge[edge_key] = std::max (max_p_level_at_edge[edge_key], elem_p_level); } } } } } // Now loop over the active elements and flag the elements // who violate the requested level mismatch { MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; const unsigned int elem_level = elem->level(); const unsigned int elem_p_level = elem->p_level(); // Skip the element if it is already fully flagged if (elem->refinement_flag() == Elem::REFINE && elem->p_refinement_flag() == Elem::REFINE) continue; // Loop over the nodes, check for possible mismatch for (unsigned int n=0; n<elem->n_edges(); n++) { AutoPtr<Elem> edge = elem->build_edge(n); unsigned int node0 = edge->node(0); unsigned int node1 = edge->node(1); if (node1 < node0) std::swap(node0, node1); std::pair<unsigned int, unsigned int> edge_key = std::make_pair(node0, node1); // Flag the element for refinement if it violates // the requested level mismatch if ( (elem_level + max_mismatch) < max_level_at_edge[edge_key] && elem->refinement_flag() != Elem::REFINE) { elem->set_refinement_flag (Elem::REFINE); flags_changed = true; } if ( (elem_p_level + max_mismatch) < max_p_level_at_edge[edge_key] && elem->p_refinement_flag() != Elem::REFINE) { elem->set_p_refinement_flag (Elem::REFINE); flags_changed = true; } } } } // If flags changed on any processor then they changed globally Parallel::max(flags_changed); return flags_changed;}bool MeshRefinement::eliminate_unrefined_patches (){ // This function must be run on all processors at once parallel_only(); bool flags_changed = false; MeshBase::element_iterator elem_it = _mesh.active_elements_begin(); const MeshBase::element_iterator elem_end = _mesh.active_elements_end(); for (; elem_it != elem_end; ++elem_it) { Elem* elem = *elem_it; // First assume that we'll have to flag this element for both h // and p refinement, then change our minds if we see any // neighbors that are as coarse or coarser than us. bool h_flag_me = true, p_flag_me = true; // Skip the element if it is already fully flagged for refinement if (elem->p_refinement_flag() == Elem::REFINE) p_flag_me = false; if (elem->refinement_flag() == Elem::REFINE) { h_flag_me = false; if (!p_flag_me) continue; } // Test the parent if that is already flagged for coarsening else if (elem->refinement_flag() == Elem::COARSEN) { libmesh_assert(elem->parent()); elem = elem->parent(); // FIXME - this doesn't seem right - RHS if (elem->refinement_flag() != Elem::COARSEN_INACTIVE) continue; p_flag_me = false; } const unsigned int my_level = elem->level(); int my_p_adjustment = 0; if (elem->p_refinement_flag() == Elem::REFINE) my_p_adjustment = 1; else if (elem->p_refinement_flag() == Elem::COARSEN) { libmesh_assert(elem->p_level() > 0); my_p_adjustment = -1; } const unsigned int my_new_p_level = elem->p_level() + my_p_adjustment; // Check all the element neighbors for (unsigned int n=0; n<elem->n_neighbors(); n++) { const Elem *neighbor = elem->neighbor(n); // Quit if the element is on a local boundary if (neighbor == NULL || neighbor == remote_elem) { h_flag_me = false; p_flag_me = false; break; } // if the neighbor will be equally or less refined than // we are, then we will not become an unrefined island. // So if we are still considering h refinement: if (h_flag_me && // If our neighbor is already at a lower level, // it can't end up at a higher level even if it // is flagged for refinement once ((neighbor->level() < my_level) || // If our neighbor is at the same level but isn't // flagged for refinement, it won't end up at a // higher level ((neighbor->active()) && (neighbor->refinement_flag() != Elem::REFINE)) || // If our neighbor is currently more refined but is // a parent flagged for coarsening, it will end up // at the same level. (neighbor->refinement_flag() == Elem::COARSEN_INACTIVE))) { // We've proven we won't become an unrefined island, // so don't h refine to avoid that. h_flag_me = false; // If we've also proven we don't need to p refine, // we don't need to check more neighbors if (!p_flag_me) break; } if (p_flag_me) { // if active neighbors will have a p level // equal to or lower than ours, then we do not need to p // refine ourselves. if (neighbor->active()) { int p_adjustment = 0; if (neighbor->p_refinement_flag() == Elem::REFINE) p_adjustment = 1; else if (neighbor->p_refinement_flag() == Elem::COARSEN) { libmesh_assert(neighbor->p_level() > 0); p_adjustment = -1; } if (my_new_p_level >= neighbor->p_level() + p_adjustment) { p_flag_me = false; if (!h_flag_me) break; } } // If we have inactive neighbors, we need to // test all their active descendants which neighbor us else if (neighbor->ancestor()) { if (neighbor->min_new_p_level_by_neighbor(elem, my_new_p_level + 2) <= my_new_p_level) { p_flag_me = false; if (!h_flag_me) break; } } } } if (h_flag_me) { // Parents that would create islands should no longer // coarsen if (elem->refinement_flag() == Elem::COARSEN_INACTIVE) { for (unsigned int c=0; c<elem->n_children(); c++) { libmesh_assert(elem->child(c)->refinement_flag() == Elem::COARSEN); elem->child(c)->set_refinement_flag(Elem::DO_NOTHING); } elem->set_refinement_flag(Elem::INACTIVE); } else elem->set_refinement_flag(Elem::REFINE); flags_changed = true; } if (p_flag_me) { if (elem->p_refinement_flag() == Elem::COARSEN) elem->set_p_refinement_flag(Elem::DO_NOTHING); else elem->set_p_refinement_flag(Elem::REFINE); flags_changed = true; } } // If flags changed on any processor then they changed globally Parallel::max(flags_changed); return flags_changed;}#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -