📄 fourth_error_estimators.c
字号:
// $Id: fourth_error_estimators.C 2868 2008-06-16 17:00:33Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// C++ includes#include <algorithm> // for std::fill#include <cmath> // for sqrt// Local Includes#include "libmesh_common.h"#include "fourth_error_estimators.h"#include "error_vector.h"#include "fe.h"#include "fe_interface.h"#include "libmesh_logging.h"#include "elem.h"#include "system.h"#include "dense_vector.h"#ifdef ENABLE_SECOND_DERIVATIVESvoidLaplacianErrorEstimator::initialize(const System&, ErrorVector&, bool){ // We'll need second derivatives for Laplacian jump computation fe_fine->get_d2phi(); fe_coarse->get_d2phi();}voidLaplacianErrorEstimator::internal_side_integration (){ Real error = 1.e-30; unsigned int n_qp = fe_fine->n_quadrature_points(); unsigned int n_fine_dofs = Ufine.size(); unsigned int n_coarse_dofs = Ucoarse.size(); unsigned int dim = fine_elem->dim(); std::vector<std::vector<RealTensor> > d2phi_coarse = fe_coarse->get_d2phi(); std::vector<std::vector<RealTensor> > d2phi_fine = fe_fine->get_d2phi(); std::vector<Real> JxW_face = fe_fine->get_JxW(); for (unsigned int qp=0; qp != n_qp; ++qp) { // Calculate solution gradients on fine and coarse elements // at this quadrature point Number laplacian_fine = 0., laplacian_coarse = 0.; for (unsigned int i=0; i != n_coarse_dofs; ++i) { laplacian_coarse += d2phi_coarse[i][qp](0,0) * Ucoarse(i); if (dim > 1) laplacian_coarse += d2phi_coarse[i][qp](1,1) * Ucoarse(i); if (dim > 2) laplacian_coarse += d2phi_coarse[i][qp](2,2) * Ucoarse(i); } for (unsigned int i=0; i != n_fine_dofs; ++i) { laplacian_fine += d2phi_fine[i][qp](0,0) * Ufine(i); if (dim > 1) laplacian_fine += d2phi_fine[i][qp](1,1) * Ufine(i); if (dim > 2) laplacian_fine += d2phi_fine[i][qp](2,2) * Ufine(i); } // Find the jump in the Laplacian // at this quadrature point const Number jump = laplacian_fine - laplacian_coarse; const Real jump2 = libmesh_norm(jump); // Accumulate the jump integral error += JxW_face[qp] * jump2; } // Add the h-weighted jump integral to each error term fine_error = error * fine_elem->hmax() * component_scale[var]; coarse_error = error * coarse_elem->hmax() * component_scale[var];}#else // defined (ENABLE_SECOND_DERIVATIVES)voidLaplacianErrorEstimator::initialize(const System&, ErrorVector&, bool){ std::cerr << "Error: LaplacianErrorEstimator requires second " << "derivative support; try configuring libmesh with " << "--enable-second" << std::endl; libmesh_error();}voidLaplacianErrorEstimator::internal_side_integration (){ std::cerr << "Error: LaplacianErrorEstimator requires second " << "derivative support; try configuring libmesh with " << "--enable-second" << std::endl; libmesh_error();}#endif // defined (ENABLE_SECOND_DERIVATIVES)
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -