📄 kelly_error_estimator.c
字号:
// $Id: kelly_error_estimator.C 2868 2008-06-16 17:00:33Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// C++ includes#include <algorithm> // for std::fill#include <cmath> // for sqrt// Local Includes#include "libmesh_common.h"#include "kelly_error_estimator.h"#include "error_vector.h"#include "fe.h"#include "fe_interface.h"#include "quadrature_gauss.h"#include "libmesh_logging.h"#include "elem.h"#include "system.h"#include "dense_vector.h"voidKellyErrorEstimator::initialize(const System& system, ErrorVector&, bool){ // Hang onto the system - we may need it for variable names later. my_system = &system; // We'll need gradients and normal vectors for flux jump computation fe_fine->get_dphi(); fe_fine->get_normals(); fe_coarse->get_dphi();}voidKellyErrorEstimator::internal_side_integration (){ Real error = 1.e-30; unsigned int n_qp = fe_fine->n_quadrature_points(); unsigned int n_fine_dofs = Ufine.size(); unsigned int n_coarse_dofs = Ucoarse.size(); std::vector<std::vector<RealGradient> > dphi_coarse = fe_coarse->get_dphi(); std::vector<std::vector<RealGradient> > dphi_fine = fe_fine->get_dphi(); std::vector<Point> face_normals = fe_fine->get_normals(); std::vector<Real> JxW_face = fe_fine->get_JxW(); for (unsigned int qp=0; qp != n_qp; ++qp) { // Calculate solution gradients on fine and coarse elements // at this quadrature point Gradient grad_fine, grad_coarse; for (unsigned int i=0; i != n_coarse_dofs; ++i) grad_coarse.add_scaled (dphi_coarse[i][qp], Ucoarse(i)); for (unsigned int i=0; i != n_fine_dofs; ++i) grad_fine.add_scaled (dphi_fine[i][qp], Ufine(i)); // Find the jump in the normal derivative // at this quadrature point const Number jump = (grad_fine - grad_coarse)*face_normals[qp]; const Real jump2 = libmesh_norm(jump); // Accumulate the jump integral error += JxW_face[qp] * jump2; } // Add the h-weighted jump integral to each error term fine_error = error * fine_elem->hmax() * component_scale[var]; coarse_error = error * coarse_elem->hmax() * component_scale[var];}boolKellyErrorEstimator::boundary_side_integration (){ const std::string &var_name = my_system->variable_name(var); std::vector<std::vector<RealGradient> > dphi_fine = fe_fine->get_dphi(); std::vector<Point> face_normals = fe_fine->get_normals(); std::vector<Real> JxW_face = fe_fine->get_JxW(); std::vector<Point> qface_point = fe_fine->get_xyz(); // The reinitialization also recomputes the locations of // the quadrature points on the side. By checking if the // first quadrature point on the side is on a flux boundary // for a particular variable, we will determine if the whole // element is on a flux boundary (assuming quadrature points // are strictly contained in the side). if (this->_bc_function(*my_system, qface_point[0], var_name).first) { const Real h = fine_elem->hmax(); // The number of quadrature points const unsigned int n_qp = fe_fine->n_quadrature_points(); // The error contribution from this face Real error = 1.e-30; // loop over the integration points on the face. for (unsigned int qp=0; qp<n_qp; qp++) { // Value of the imposed flux BC at this quadrature point. const std::pair<bool,Real> flux_bc = this->_bc_function(*my_system, qface_point[qp], var_name); // Be sure the BC function still thinks we're on the // flux boundary. libmesh_assert (flux_bc.first == true); // The solution gradient from each element Gradient grad_fine; // Compute the solution gradient on element e for (unsigned int i=0; i != Ufine.size(); i++) grad_fine.add_scaled (dphi_fine[i][qp], Ufine(i)); // The difference between the desired BC and the approximate solution. const Number jump = flux_bc.second - grad_fine*face_normals[qp]; // The flux jump squared. If using complex numbers, // libmesh_norm(z) returns |z|^2, where |z| is the modulus of z. const Real jump2 = libmesh_norm(jump); // Integrate the error on the face. The error is // scaled by an additional power of h, where h is // the maximum side length for the element. This // arises in the definition of the indicator. error += JxW_face[qp]*jump2; } // End quadrature point loop fine_error = error*h*component_scale[var]; return true; } // end if side on flux boundary return false;}voidKellyErrorEstimator::attach_flux_bc_function (std::pair<bool,Real> fptr(const System& system, const Point& p, const std::string& var_name)){ _bc_function = fptr;// We may be turning boundary side integration on or off if (fptr) integrate_boundary_sides = true; else integrate_boundary_sides = false;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -