⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 edge_edge3.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
// $Id: edge_edge3.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// Local includes#include "edge_edge3.h"#ifdef ENABLE_AMRconst float Edge3::_embedding_matrix[2][3][3] ={  // embedding matrix for child 0  {    // 0    1    2      {1.0, 0.0, 0.0}, // left    {0.0, 0.0, 1.0}, // right    {3./8.,-1./8.,0.75} // middle  },  // embedding matrix for child 1  {    // 0    1    2      {0.0, 0.0, 1.0}, // left    {0.0, 1.0, 0.0},  // right    {-1./8.,3./8.,0.75} // middle  }};#endifbool Edge3::is_vertex(const unsigned int i) const{  if (i < 2)    return true;  return false;}bool Edge3::is_edge(const unsigned int i) const{  if (i < 2)   return false;  return true;}bool Edge3::is_face(const unsigned int ) const{  return false;}bool Edge3::is_node_on_side(const unsigned int n,			    const unsigned int s) const{  libmesh_assert(s < 2);  libmesh_assert(n < 3);  return (s == n);}bool Edge3::is_node_on_edge(const unsigned int,			    const unsigned int e) const{  libmesh_assert(e == 0);  return true;}bool Edge3::has_affine_map() const{  return (this->point(2).relative_fuzzy_equals          ((this->point(0) + this->point(1))/2));}void Edge3::connectivity(const unsigned int sc,			 const IOPackage iop,			 std::vector<unsigned int>& conn) const{  libmesh_assert (sc <= 1);  libmesh_assert (sc < this->n_sub_elem());  libmesh_assert (iop != INVALID_IO_PACKAGE);  // Create storage  conn.resize(2);  switch (iop)    {    case TECPLOT:      {	switch (sc)	  {	  case 0: 	    conn[0] = this->node(0)+1;	    conn[1] = this->node(2)+1;	    return;      	  case 1: 	    conn[0] = this->node(2)+1;	    conn[1] = this->node(1)+1;	    return;	  default:	    libmesh_error();	  }      }          case VTK:      {	switch (sc)	  {	  case 0: 	    conn[0] = this->node(0);	    conn[1] = this->node(2);      	    return;      	  case 1: 	    conn[0] = this->node(2);	    conn[1] = this->node(1);      	    return;	  default:	    libmesh_error();	  }      }    default:      {	libmesh_error();      }    }}std::pair<unsigned short int, unsigned short int>Edge3::second_order_child_vertex (const unsigned int) const{  return std::pair<unsigned short int, unsigned short int>(0,0);}Real Edge3::volume () const{  // Finding the (exact) length of a general quadratic element  // is a surprisingly complicated formula.  Point A = this->point(0) + this->point(1) - 2.*this->point(2);  Point B = 0.5*(this->point(1) - this->point(0));  const Real a = A.size_sq();   const Real b = 2.*(A*B);      const Real c = B.size_sq();   // Degenerate straight line case  if (a < TOLERANCE*TOLERANCE*TOLERANCE)    return (this->point(1) - this->point(0)).size();  const Real ba=b/a;   const Real ca=c/a;   libmesh_assert (1.-ba+ca>0.);    const Real s1 = std::sqrt(1. - ba + ca);  const Real s2 = std::sqrt(1. + ba + ca);  return 0.5*std::sqrt(a)*((1.-0.5*ba)*s1 +			   (1.+0.5*ba)*s2 +			   (ca - 0.25*ba*ba)*std::log( (1.-0.5*ba+s1)/(-1.-0.5*ba+s2) )			   );}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -