⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 face_tri3.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
// $Id: face_tri3.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// C++ includes// Local includes#include "side.h"#include "edge_edge2.h"#include "face_tri3.h"// ------------------------------------------------------------// Tri3 class static member initializationsconst unsigned int Tri3::side_nodes_map[3][2] ={  {0, 1}, // Side 0  {1, 2}, // Side 1  {2, 0}  // Side 2};#ifdef ENABLE_AMRconst float Tri3::_embedding_matrix[4][3][3] ={  // embedding matrix for child 0  {    // 0    1    2      {1.0, 0.0, 0.0}, // 0    {0.5, 0.5, 0.0}, // 1    {0.5, 0.0, 0.5}  // 2  },  // embedding matrix for child 1  {    // 0    1    2      {0.5, 0.5, 0.0}, // 0    {0.0, 1.0, 0.0}, // 1    {0.0, 0.5, 0.5}  // 2  },  // embedding matrix for child 2  {    // 0    1    2      {0.5, 0.0, 0.5}, // 0    {0.0, 0.5, 0.5}, // 1    {0.0, 0.0, 1.0}  // 2  },  // embedding matrix for child 3  {    // 0    1    2      {0.5, 0.5, 0.0}, // 0    {0.0, 0.5, 0.5}, // 1    {0.5, 0.0, 0.5}  // 2  }};#endif// ------------------------------------------------------------// Tri3 class member functionsbool Tri3::is_vertex(const unsigned int) const{  return true;}bool Tri3::is_edge(const unsigned int) const{  return false;}bool Tri3::is_face(const unsigned int) const{  return false;}bool Tri3::is_node_on_side(const unsigned int n,			   const unsigned int s) const{  libmesh_assert(s < n_sides());  for (unsigned int i = 0; i != 2; ++i)    if (side_nodes_map[s][i] == n)      return true;  return false;}AutoPtr<Elem> Tri3::build_side (const unsigned int i,				bool proxy) const{  libmesh_assert (i < this->n_sides());  if (proxy)    {      AutoPtr<Elem> ap(new Side<Edge2,Tri3>(this,i));      return ap;    }  else    {      Edge2* edge = new Edge2;      switch (i)	{	case 0:	  {	    edge->set_node(0) = this->get_node(0);	    edge->set_node(1) = this->get_node(1);		    AutoPtr<Elem> ap(edge);  return ap;	  }	case 1:	  {	    edge->set_node(0) = this->get_node(1);	    edge->set_node(1) = this->get_node(2);		    AutoPtr<Elem> ap(edge);  return ap;	  }	case 2:	  {	    edge->set_node(0) = this->get_node(2);	    edge->set_node(1) = this->get_node(0);		    AutoPtr<Elem> ap(edge);  return ap;	  }	default:	  {	    libmesh_error();	  }	}    }    // We will never get here...  Look at the code above.  libmesh_error();  AutoPtr<Elem> ap(NULL);  return ap;}void Tri3::connectivity(const unsigned int sf,			const IOPackage iop,			std::vector<unsigned int>& conn) const{  libmesh_assert (sf <this->n_sub_elem());  libmesh_assert (iop != INVALID_IO_PACKAGE);    switch (iop)    {    case TECPLOT:      {	conn.resize(4);	conn[0] = this->node(0)+1;	conn[1] = this->node(1)+1;	conn[2] = this->node(2)+1;	conn[3] = this->node(2)+1;	return;      }    case VTK:      {	conn.resize(3);	conn[0] = this->node(0);	conn[1] = this->node(1);	conn[2] = this->node(2);	return;      }    default:      libmesh_error();    }  libmesh_error();}Real Tri3::volume () const{  // 3-node triangles have the following formula for computing the area  Point v10 ( *(this->get_node(1)) - *(this->get_node(0)) );  Point v20 ( *(this->get_node(2)) - *(this->get_node(0)) );  return 0.5 * (v10.cross(v20)).size() ;}std::pair<Real, Real> Tri3::min_and_max_angle() const{  Point v10 ( this->point(1) - this->point(0) );  Point v20 ( this->point(2) - this->point(0) );  Point v21 ( this->point(2) - this->point(1) );  const Real    len_10=v10.size(),    len_20=v20.size(),    len_21=v21.size()    ;  const Real    theta0=std::acos(( v10*v20)/len_10/len_20),    theta1=std::acos((-v10*v21)/len_10/len_21),    theta2=libMesh::pi - theta0 - theta1    ;  libmesh_assert(theta0 > 0.);  libmesh_assert(theta1 > 0.);  libmesh_assert(theta2 > 0.);    return std::make_pair(std::min(theta0, std::min(theta1,theta2)),			std::max(theta0, std::max(theta1,theta2)));}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -