⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sphere.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
// $Id: sphere.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// C++ includes#include <cmath> // for std::abs// Local includes#include "sphere.h"// ------------------------------------------------------------// Sphere class member functionsSphere::Sphere () :   _rad(-1.){}Sphere::Sphere (const Point& c, 		const Real   r){  libmesh_assert (r > 0.);  this->create_from_center_radius (c, r);}Sphere::Sphere (const Sphere& other_sphere) :  Surface(){  this->create_from_center_radius (other_sphere.center(),				   other_sphere.radius());}Sphere::~Sphere (){}void Sphere::create_from_center_radius (const Point& c, const Real r){  this->center() = c;  this->radius() = r;  libmesh_assert (this->radius() > 0.);}bool Sphere::intersects (const Sphere& other_sphere) const{  libmesh_assert ( this->radius() > 0. );  libmesh_assert ( other_sphere.radius() > 0. );  const Real distance = (this->center() - other_sphere.center()).size();  if (distance < (this->radius() + other_sphere.radius()) )    return true;    return false;}bool Sphere::above_surface (const Point& p) const {  libmesh_assert (this->radius() > 0.);  // create a vector from the center to the point.  const Point w = p - this->center();  if (w.size() > this->radius())    return true;  return false;}bool Sphere::below_surface (const Point& p) const {  libmesh_assert (this->radius() > 0.);  return ( !this->above_surface (p) );}bool Sphere::on_surface (const Point& p) const {  libmesh_assert (this->radius() > 0.);  // Create a vector from the center to the point.  const Point w = p - this->center();  // if the size of that vector is the same as the radius() then  // the point is on the surface.  if (std::abs(w.size() - this->radius()) < 1.e-10)    return true;  return false;}Point Sphere::closest_point (const Point& p) const{  libmesh_assert (this->radius() > 0.);  // get the normal from the surface in the direction  // of p  Point normal = this->unit_normal (p);  // The closest point on the sphere is in the direction  // of the normal a distance r from the center.  const Point cp = this->center() + normal*this->radius();    return cp;}Point Sphere::unit_normal (const Point& p) const{  libmesh_assert (this->radius() > 0.);  libmesh_assert ( !(p == this->center()) );    // Create a vector from the center to the point  Point n = p - this->center();  return n.unit();}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -