⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cell_hex27.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
📖 第 1 页 / 共 5 页
字号:
// $Id: cell_hex27.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// C++ includes// Local includes#include "side.h"#include "cell_hex27.h"#include "edge_edge3.h"#include "face_quad9.h"// ------------------------------------------------------------// Hex27 class static member initializationsconst unsigned int Hex27::side_nodes_map[6][9] ={  {0, 3, 2, 1, 11, 10,  9,  8, 20}, // Side 0  {0, 1, 5, 4,  8, 13, 16, 12, 21}, // Side 1  {1, 2, 6, 5,  9, 14, 17, 13, 22}, // Side 2  {2, 3, 7, 6, 10, 15, 18, 14, 23}, // Side 3  {3, 0, 4, 7, 11, 12, 19, 15, 24}, // Side 4  {4, 5, 6, 7, 16, 17, 18, 19, 25}  // Side 5};const unsigned int Hex27::edge_nodes_map[12][3] ={  {0, 1, 8},  // Side 0  {1, 2, 9},  // Side 1  {2, 3, 10}, // Side 2  {0, 3, 11}, // Side 3  {0, 4, 12}, // Side 4  {1, 5, 13}, // Side 5  {2, 6, 14}, // Side 6  {3, 7, 15}, // Side 7  {4, 5, 16}, // Side 8  {5, 6, 17}, // Side 9  {6, 7, 18}, // Side 10  {4, 7, 19}  // Side 11};// ------------------------------------------------------------// Hex27 class member functionsbool Hex27::is_vertex(const unsigned int i) const{  if (i < 8)    return true;  return false;}bool Hex27::is_edge(const unsigned int i) const{  if (i < 8)    return false;  if (i > 19)    return false;  return true;}bool Hex27::is_face(const unsigned int i) const{  if (i == 26)    return false;  if (i > 19)    return true;  return false;}bool Hex27::is_node_on_side(const unsigned int n,			    const unsigned int s) const{  libmesh_assert(s < n_sides());  for (unsigned int i = 0; i != 9; ++i)    if (side_nodes_map[s][i] == n)      return true;  return false;}bool Hex27::is_node_on_edge(const unsigned int n,			    const unsigned int e) const{  libmesh_assert(e < n_edges());  for (unsigned int i = 0; i != 3; ++i)    if (edge_nodes_map[e][i] == n)      return true;  return false;}bool Hex27::has_affine_map() const{  // Make sure x-edge endpoints are affine  Point v = this->point(1) - this->point(0);  if (!v.relative_fuzzy_equals(this->point(2) - this->point(3)) ||      !v.relative_fuzzy_equals(this->point(5) - this->point(4)) ||      !v.relative_fuzzy_equals(this->point(6) - this->point(7)))    return false;  // Make sure x-edges are straight  // and x-face and center points are centered  v /= 2;  if (!v.relative_fuzzy_equals(this->point(8) - this->point(0)) ||      !v.relative_fuzzy_equals(this->point(10) - this->point(3)) ||      !v.relative_fuzzy_equals(this->point(16) - this->point(4)) ||      !v.relative_fuzzy_equals(this->point(18) - this->point(7)) ||      !v.relative_fuzzy_equals(this->point(20) - this->point(11)) ||      !v.relative_fuzzy_equals(this->point(21) - this->point(12)) ||      !v.relative_fuzzy_equals(this->point(23) - this->point(15)) ||      !v.relative_fuzzy_equals(this->point(25) - this->point(19)) ||      !v.relative_fuzzy_equals(this->point(26) - this->point(24)))    return false;  // Make sure xz-faces are identical parallelograms  v = this->point(4) - this->point(0);  if (!v.relative_fuzzy_equals(this->point(7) - this->point(3)))    return false;  v /= 2;  if (!v.relative_fuzzy_equals(this->point(12) - this->point(0)) ||      !v.relative_fuzzy_equals(this->point(13) - this->point(1)) ||      !v.relative_fuzzy_equals(this->point(14) - this->point(2)) ||      !v.relative_fuzzy_equals(this->point(15) - this->point(3)) ||      !v.relative_fuzzy_equals(this->point(22) - this->point(9)) ||      !v.relative_fuzzy_equals(this->point(24) - this->point(11)))    return false;  // Make sure y-edges are straight  v = (this->point(3) - this->point(0))/2;  if (!v.relative_fuzzy_equals(this->point(11) - this->point(0)) ||      !v.relative_fuzzy_equals(this->point(9) - this->point(1)) ||      !v.relative_fuzzy_equals(this->point(17) - this->point(5)) ||      !v.relative_fuzzy_equals(this->point(19) - this->point(4)))    return false;  // If all the above checks out, the map is affine  return true;}unsigned int Hex27::key (const unsigned int s) const{ libmesh_assert (s < this->n_sides());  // Think of a unit cube: (-1,1) x (-1,1) x (1,1)  switch (s)    {    case 0:  // the face at z=0      return	this->compute_key (this->node(20));    case 1:  // the face at y = 0      return	this->compute_key (this->node(21));    case 2:  // the face at x=1

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -