⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cell_inf_hex.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
// $Id: cell_inf_hex.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// Local includes#include "libmesh_config.h"#ifdef ENABLE_INFINITE_ELEMENTS// C++ includes#include <algorithm> // for std::min, std::max// Local includes cont'd#include "cell_inf_hex.h"#include "face_quad4.h"#include "face_inf_quad4.h"// ------------------------------------------------------------// InfHex class member functionsunsigned int InfHex::key (const unsigned int s) const{  libmesh_assert (s < this->n_sides());  switch (s)    {    case 0:  // the face at z = -1      return	this->compute_key (this->node(0),			   this->node(1),			   this->node(2),			   this->node(3));    case 1:  // the face at y = -1      return	this->compute_key (this->node(0),			   this->node(1),			   this->node(5),			   this->node(4));    case 2:  // the face at x = 1      return	this->compute_key (this->node(1),			   this->node(2),			   this->node(6),			   this->node(5));    case 3: // the face at y = 1      return	this->compute_key (this->node(2),			   this->node(3),			   this->node(7),			   this->node(6));      	    case 4: // the face at x = -1      return	this->compute_key (this->node(3),			   this->node(0),			   this->node(4),			   this->node(7));    }  // We'll never get here.  libmesh_error(); return 0;}AutoPtr<DofObject> InfHex::side (const unsigned int i) const{  libmesh_assert (i < this->n_sides());  /*   *Think of a unit cube: (-1,1) x (-1,1)x (-1,1),   * with (in general) the normals pointing outwards   */  switch (i)    {    case 0:  // the face at z = -1      // the base, where the infinite element couples to conventional      // elements      {          Elem* face = new Quad4;        AutoPtr<DofObject> ap_face(face);	/*	 * Oops, here we are, claiming the normal of the face	 * elements point outwards -- and this is the exception:	 * For the side built from the base face, 	 * the normal is pointing _into_ the element!	 * Why is that? - In agreement with build_side(),	 * which in turn _has_ to build the face in this	 * way as to enable the cool way \p InfFE re-uses \p FE.	 */	face->set_node(0) = this->get_node(0);	face->set_node(1) = this->get_node(1);	face->set_node(2) = this->get_node(2);	face->set_node(3) = this->get_node(3);	return ap_face;      }    case 1:  // the face at y = -1      // this face connects to another infinite element      {        Elem* face = new InfQuad4;        AutoPtr<DofObject> ap_face(face);	face->set_node(0) = this->get_node(0);	face->set_node(1) = this->get_node(1);	face->set_node(2) = this->get_node(4);	face->set_node(3) = this->get_node(5);		return ap_face;      }    case 2:  // the face at x = 1      // this face connects to another infinite element      {        Elem* face = new InfQuad4;        AutoPtr<DofObject> ap_face(face);	//AutoPtr<Elem> face(new InfQuad4);	face->set_node(0) = this->get_node(1);	face->set_node(1) = this->get_node(2);	face->set_node(2) = this->get_node(5);	face->set_node(3) = this->get_node(6);	return ap_face;      }    case 3: // the face at y = 1      // this face connects to another infinite element      {        Elem* face = new InfQuad4;        AutoPtr<DofObject> ap_face(face);	//AutoPtr<Elem> face(new InfQuad4);	face->set_node(0) = this->get_node(2);	face->set_node(1) = this->get_node(3);	face->set_node(2) = this->get_node(6);	face->set_node(3) = this->get_node(7);		return ap_face;      }    case 4: // the face at x = -1      // this face connects to another infinite element      {          Elem* face = new InfQuad4;        AutoPtr<DofObject> ap_face(face);	//AutoPtr<Elem> face(new InfQuad4);	face->set_node(0) = this->get_node(3);	face->set_node(1) = this->get_node(0);	face->set_node(2) = this->get_node(7);	face->set_node(3) = this->get_node(4);	return ap_face;      }    default:      {	libmesh_error();	AutoPtr<DofObject> ap(NULL);  return ap;      }    }  // We'll never get here.  libmesh_error();  AutoPtr<DofObject> ap(NULL);  return ap;}bool InfHex::is_child_on_side(const unsigned int c,                              const unsigned int s) const{  libmesh_assert (c < this->n_children());  libmesh_assert (s < this->n_sides());  return (s == 0 || c+1 == s || c == s%4);}Real InfHex::quality (const ElemQuality q) const{  switch (q)    {            /**       * Compue the min/max diagonal ratio.       * Source: CUBIT User's Manual.       *       * For infinite elements, we just only compute       * the diagonal in the face...       * Don't know whether this makes sense,       * but should be a feasible way.       */    case DIAGONAL:      {	// Diagonal between node 0 and node 2	const Real d02 = this->length(0,2);	// Diagonal between node 1 and node 3	const Real d13 = this->length(1,3);	// Find the biggest and smallest diagonals	const Real min = std::min(d02, d13);	const Real max = std::max(d02, d13);	libmesh_assert (max != 0.0);		return min / max;	break;      }      /**       * Minimum ratio of lengths derived from opposite edges.       * Source: CUBIT User's Manual.       *       * For IFEMs, do this only for the base face...       * Does this make sense?       */    case TAPER:      {	/**	 * Compute the side lengths.	 */	const Real d01 = this->length(0,1);	const Real d12 = this->length(1,2);	const Real d23 = this->length(2,3);	const Real d03 = this->length(0,3);	std::vector<Real> edge_ratios(2);	// Bottom	edge_ratios[8] = std::min(d01, d23) / std::max(d01, d23);	edge_ratios[9] = std::min(d03, d12) / std::max(d03, d12);		return *(std::min_element(edge_ratios.begin(), edge_ratios.end())) ;	break;      }      /**       * Minimum edge length divided by max diagonal length.       * Source: CUBIT User's Manual.       *       * And again, we mess around a bit, for the IFEMs...       * Do this only for the base.       */    case STRETCH:      {	/**	 * Should this be a sqrt2, when we do this for the base only?	 */	const Real sqrt3 = 1.73205080756888;	/**	 * Compute the maximum diagonal in the base.	 */	const Real d02 = this->length(0,2);	const Real d13 = this->length(1,3);	const Real max_diag = std::max(d02, d13);	libmesh_assert ( max_diag != 0.0 );	/**	 * Compute the minimum edge length in the base.	 */	std::vector<Real> edges(4);	edges[0]  = this->length(0,1);	edges[1]  = this->length(1,2);	edges[2]  = this->length(2,3);	edges[3]  = this->length(0,3);	const Real min_edge = *(std::min_element(edges.begin(), edges.end()));	return sqrt3 * min_edge / max_diag ;	break;      }            /**       * I don't know what to do for this metric.        * Maybe the base class knows...       */    default:      {	return Elem::quality(q);      }    }        // Will never get here...    libmesh_error();    return 0.;}std::pair<Real, Real> InfHex::qual_bounds (const ElemQuality) const{  std::cerr << "ERROR: Not implemented." << std::endl;  libmesh_error();  std::pair<Real, Real> bounds;/*  switch (q)    {    case ASPECT_RATIO:      bounds.first  = 1.;      bounds.second = 4.;      break;          case SKEW:      bounds.first  = 0.;      bounds.second = 0.5;      break;    case SHEAR:    case SHAPE:      bounds.first  = 0.3;      bounds.second = 1.;      break;    case CONDITION:      bounds.first  = 1.;      bounds.second = 8.;      break;    case JACOBIAN:      bounds.first  = 0.5;      bounds.second = 1.;      break;            case DISTORTION:      bounds.first  = 0.6;      bounds.second = 1.;      break;      case TAPER:      bounds.first  = 0.;      bounds.second = 0.4;      break;          case STRETCH:      bounds.first  = 0.25;      bounds.second = 1.;      break;          case DIAGONAL:      bounds.first  = 0.65;      bounds.second = 1.;      break;    case SIZE:      bounds.first  = 0.5;      bounds.second = 1.;      break;          default:      std::cout << "Warning: Invalid quality measure chosen." << std::endl;      bounds.first  = -1;      bounds.second = -1;    }*/  return bounds;}const unsigned short int InfHex::_second_order_adjacent_vertices[8][2] = {  { 0,  1}, // vertices adjacent to node 8   { 1,  2}, // vertices adjacent to node 9   { 2,  3}, // vertices adjacent to node 10   { 0,  3}, // vertices adjacent to node 11  { 4,  5}, // vertices adjacent to node 12  { 5,  6}, // vertices adjacent to node 13  { 6,  7}, // vertices adjacent to node 14  { 4,  7}  // vertices adjacent to node 15};const unsigned short int InfHex::_second_order_vertex_child_number[18] ={  99,99,99,99,99,99,99,99, // Vertices  0,1,2,0,                 // Edges  0,1,2,0,0,               // Faces  0                        // Interior};const unsigned short int InfHex::_second_order_vertex_child_index[18] ={  99,99,99,99,99,99,99,99, // Vertices  1,2,3,3,                 // Edges  5,6,7,7,2,               // Faces  6                        // Interior};#endif // ifdef ENABLE_INFINITE_ELEMENTS

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -