📄 cell_hex8.c
字号:
// $Id: cell_hex8.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// C++ includes// Local includes#include "side.h"#include "cell_hex8.h"#include "edge_edge2.h"#include "face_quad4.h"// ------------------------------------------------------------// Hex8 class static member initializationsconst unsigned int Hex8::side_nodes_map[6][4] ={ {0, 3, 2, 1}, // Side 0 {0, 1, 5, 4}, // Side 1 {1, 2, 6, 5}, // Side 2 {2, 3, 7, 6}, // Side 3 {3, 0, 4, 7}, // Side 4 {4, 5, 6, 7} // Side 5};const unsigned int Hex8::edge_nodes_map[12][2] ={ {0, 1}, // Side 0 {1, 2}, // Side 1 {2, 3}, // Side 2 {0, 3}, // Side 3 {0, 4}, // Side 4 {1, 5}, // Side 5 {2, 6}, // Side 6 {3, 7}, // Side 7 {4, 5}, // Side 8 {5, 6}, // Side 9 {6, 7}, // Side 10 {4, 7} // Side 11};// ------------------------------------------------------------// Hex8 class member functionsbool Hex8::is_vertex(const unsigned int) const{ return true;}bool Hex8::is_edge(const unsigned int) const{ return false;}bool Hex8::is_face(const unsigned int) const{ return false;}bool Hex8::is_node_on_side(const unsigned int n, const unsigned int s) const{ libmesh_assert(s < n_sides()); for (unsigned int i = 0; i != 4; ++i) if (side_nodes_map[s][i] == n) return true; return false;}bool Hex8::is_node_on_edge(const unsigned int n, const unsigned int e) const{ libmesh_assert(e < n_edges()); for (unsigned int i = 0; i != 2; ++i) if (edge_nodes_map[e][i] == n) return true; return false;}bool Hex8::has_affine_map() const{ // Make sure x-edge endpoints are affine Point v = this->point(1) - this->point(0); if (!v.relative_fuzzy_equals(this->point(2) - this->point(3)) || !v.relative_fuzzy_equals(this->point(5) - this->point(4)) || !v.relative_fuzzy_equals(this->point(6) - this->point(7))) return false; // Make sure xz-faces are identical parallelograms v = this->point(4) - this->point(0); if (!v.relative_fuzzy_equals(this->point(7) - this->point(3))) return false; // If all the above checks out, the map is affine return true;}AutoPtr<Elem> Hex8::build_side (const unsigned int i, bool proxy) const{ libmesh_assert (i < this->n_sides()); if (proxy) { AutoPtr<Elem> ap(new Side<Quad4,Hex8>(this,i)); return ap; } else { AutoPtr<Elem> face(new Quad4); // Think of a unit cube: (-1,1) x (-1,1)x (-1,1) switch (i) { case 0: // the face at z = -1 { face->set_node(0) = this->get_node(0); face->set_node(1) = this->get_node(3); face->set_node(2) = this->get_node(2); face->set_node(3) = this->get_node(1); return face; } case 1: // the face at y = -1 { face->set_node(0) = this->get_node(0); face->set_node(1) = this->get_node(1); face->set_node(2) = this->get_node(5); face->set_node(3) = this->get_node(4); return face; } case 2: // the face at x = 1 { face->set_node(0) = this->get_node(1); face->set_node(1) = this->get_node(2); face->set_node(2) = this->get_node(6); face->set_node(3) = this->get_node(5); return face; } case 3: // the face at y = 1 { face->set_node(0) = this->get_node(2); face->set_node(1) = this->get_node(3); face->set_node(2) = this->get_node(7); face->set_node(3) = this->get_node(6); return face; } case 4: // the face at x = -1 { face->set_node(0) = this->get_node(3); face->set_node(1) = this->get_node(0); face->set_node(2) = this->get_node(4); face->set_node(3) = this->get_node(7); return face; } case 5: // the face at z = 1 { face->set_node(0) = this->get_node(4); face->set_node(1) = this->get_node(5); face->set_node(2) = this->get_node(6); face->set_node(3) = this->get_node(7); return face; } default: { libmesh_error(); return face; } } } // We'll never get here. libmesh_error(); AutoPtr<Elem> ap(NULL); return ap;}AutoPtr<Elem> Hex8::build_edge (const unsigned int i) const{ libmesh_assert (i < this->n_edges()); AutoPtr<Elem> ap(new SideEdge<Edge2,Hex8>(this,i)); return ap;} void Hex8::connectivity(const unsigned int sc, const IOPackage iop, std::vector<unsigned int>& conn) const{ libmesh_assert (_nodes != NULL); libmesh_assert (sc < this->n_sub_elem()); libmesh_assert (iop != INVALID_IO_PACKAGE); conn.resize(8); switch (iop) { case TECPLOT: { conn[0] = this->node(0)+1; conn[1] = this->node(1)+1; conn[2] = this->node(2)+1; conn[3] = this->node(3)+1; conn[4] = this->node(4)+1; conn[5] = this->node(5)+1; conn[6] = this->node(6)+1; conn[7] = this->node(7)+1; return; } case VTK: { conn[0] = this->node(0); conn[1] = this->node(1); conn[2] = this->node(2); conn[3] = this->node(3); conn[4] = this->node(4); conn[5] = this->node(5); conn[6] = this->node(6); conn[7] = this->node(7); return; } default: libmesh_error(); } libmesh_error();}#ifdef ENABLE_AMRconst float Hex8::_embedding_matrix[8][8][8] ={ // embedding matrix for child 0 { // 0 1 2 3 4 5 6 7 { 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, // 0 { 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, // 1 { .25, .25, .25, .25, 0.0, 0.0, 0.0, 0.0}, // 2 { 0.5, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0}, // 3 { 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0}, // 4 { .25, .25, 0.0, 0.0, .25, .25, 0.0, 0.0}, // 5 {.125, .125, .125, .125, .125, .125, .125, .125}, // 6 { .25, 0.0, 0.0, .25, .25, 0.0, 0.0, .25} // 7 }, // embedding matrix for child 1 { // 0 1 2 3 4 5 6 7 { 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, // 0 { 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0}, // 1 { 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0}, // 2 { .25, .25, .25, .25, 0.0, 0.0, 0.0, 0.0}, // 3 { .25, .25, 0.0, 0.0, .25, .25, 0.0, 0.0}, // 4 { 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0}, // 5 { 0.0, .25, .25, 0.0, 0.0, .25, .25, 0.0}, // 6 {.125, .125, .125, .125, .125, .125, .125, .125} // 7 }, // embedding matrix for child 2 { // 0 1 2 3 4 5 6 7 { 0.5, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.0}, // 0 { .25, .25, .25, .25, 0.0, 0.0, 0.0, 0.0}, // 1 { 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0}, // 2 { 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0}, // 3 { .25, 0.0, 0.0, .25, .25, 0.0, 0.0, .25}, // 4 {.125, .125, .125, .125, .125, .125, .125, .125}, // 5 { 0.0, 0.0, .25, .25, 0.0, 0.0, .25, .25}, // 6 { 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5} // 7 }, // embedding matrix for child 3 { // 0 1 2 3 4 5 6 7 { .25, .25, .25, .25, 0.0, 0.0, 0.0, 0.0}, // 0 { 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0, 0.0}, // 1 { 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0}, // 2 { 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.0, 0.0}, // 3 {.125, .125, .125, .125, .125, .125, .125, .125}, // 4 { 0.0, .25, .25, 0.0, 0.0, .25, .25, 0.0}, // 5 { 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 0.0}, // 6 { 0.0, 0.0, .25, .25, 0.0, 0.0, .25, .25} // 7 }, // embedding matrix for child 4 { // 0 1 2 3 4 5 6 7 { 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0}, // 0 { .25, .25, 0.0, 0.0, .25, .25, 0.0, 0.0}, // 1 {.125, .125, .125, .125, .125, .125, .125, .125}, // 2 { .25, 0.0, 0.0, .25, .25, 0.0, 0.0, .25}, // 3 { 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0}, // 4 { 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0}, // 5 { 0.0, 0.0, 0.0, 0.0, .25, .25, .25, .25}, // 6 { 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.5} // 7 }, // embedding matrix for child 5 { // 0 1 2 3 4 5 6 7 { .25, .25, 0.0, 0.0, .25, .25, 0.0, 0.0}, // 0 { 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0}, // 1 { 0.0, .25, .25, 0.0, 0.0, .25, .25, 0.0}, // 2 {.125, .125, .125, .125, .125, .125, .125, .125}, // 3 { 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0}, // 4 { 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0}, // 5 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0}, // 6 { 0.0, 0.0, 0.0, 0.0, .25, .25, .25, .25} // 7 }, // embedding matrix for child 6 { // 0 1 2 3 4 5 6 7 { .25, 0.0, 0.0, .25, .25, 0.0, 0.0, .25}, // 0 {.125, .125, .125, .125, .125, .125, .125, .125}, // 1 { 0.0, 0.0, .25, .25, 0.0, 0.0, .25, .25}, // 2 { 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5}, // 3 { 0.0, 0.0, 0.0, 0.0, 0.5, 0.0, 0.0, 0.5}, // 4 { 0.0, 0.0, 0.0, 0.0, .25, .25, .25, .25}, // 5 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5}, // 6 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0} // 7 }, // embedding matrix for child 7 { // 0 1 2 3 4 5 6 7 {.125, .125, .125, .125, .125, .125, .125, .125}, // 0 { 0.0, .25, .25, 0.0, 0.0, .25, .25, 0.0}, // 1 { 0.0, 0.0, 0.5, 0.0, 0.0, 0.0, 0.5, 0.0}, // 2 { 0.0, 0.0, .25, .25, 0.0, 0.0, .25, .25}, // 3 { 0.0, 0.0, 0.0, 0.0, .25, .25, .25, .25}, // 4 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5, 0.0}, // 5 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0}, // 6 { 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5, 0.5} // 7 }};#endifReal Hex8::volume () const{ // Compute the volume of the tri-linear hex by splitting it // into 6 sub-pyramids and applying the formula in: // "Calculation of the Volume of a General Hexahedron // for Flow Predictions", AIAA Journal v.23, no.6, 1984, p.954- static const unsigned char sub_pyr[6][4] = { {0, 3, 2, 1}, {6, 7, 4, 5}, {0, 1, 5, 4}, {3, 7, 6, 2}, {0, 4, 7, 3}, {1, 2, 6, 5} }; // The centroid is a convenient point to use // for the apex of all the pyramids. const Point R = this->centroid(); Node* pyr_base[4]; Real vol=0.; // Compute the volume using 6 sub-pyramids for (unsigned int n=0; n<6; ++n) { // Set the nodes of the pyramid base for (unsigned int i=0; i<4; ++i) pyr_base[i] = this->_nodes[sub_pyr[n][i]]; // Compute diff vectors Point a ( *pyr_base[0] - R ); Point b ( *pyr_base[1] - *pyr_base[3] ); Point c ( *pyr_base[2] - *pyr_base[0] ); Point d ( *pyr_base[3] - *pyr_base[0] ); Point e ( *pyr_base[1] - *pyr_base[0] ); // Compute pyramid volume Real sub_vol = (1./6.)*(a*(b.cross(c))) + (1./12.)*(c*(d.cross(e))); libmesh_assert (sub_vol>0.); vol += sub_vol; } return vol;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -