⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 inf_fe_map.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
📖 第 1 页 / 共 2 页
字号:
// $Id: inf_fe_map.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// Local includes#include "libmesh_config.h"#ifdef ENABLE_INFINITE_ELEMENTS#include "inf_fe.h"#include "fe.h"#include "elem.h"#include "inf_fe_macro.h"#include "libmesh_logging.h"// ------------------------------------------------------------// InfFE static class members concerned with coordinate// mappingtemplate <unsigned int Dim, FEFamily T_radial, InfMapType T_map>Point InfFE<Dim,T_radial,T_map>::map (const Elem* inf_elem,				      const Point& reference_point){  libmesh_assert (inf_elem != NULL);  libmesh_assert (Dim != 0);  AutoPtr<Elem>      base_elem (Base::build_elem (inf_elem));  const Order        radial_mapping_order (Radial::mapping_order());      const Real         v                    (reference_point(Dim-1));   // map in the base face  Point base_point;  switch (Dim)    {      case 1:      base_point = inf_elem->point(0);      break;    case 2:      base_point = FE<1,LAGRANGE>::map (base_elem.get(), reference_point);      break;    case 3:      base_point = FE<2,LAGRANGE>::map (base_elem.get(), reference_point);      break;#ifdef DEBUG    default:	libmesh_error();#endif    }        // map in the outer node face not necessary. Simply  // compute the outer_point = base_point + (base_point-origin)  const Point outer_point (base_point * 2. - inf_elem->origin());    Point p;  // there are only two mapping shapes in radial direction  p.add_scaled (base_point,  InfFE<Dim,INFINITE_MAP,T_map>::eval (v, radial_mapping_order, 0));  p.add_scaled (outer_point, InfFE<Dim,INFINITE_MAP,T_map>::eval (v, radial_mapping_order, 1));  return p;}template <unsigned int Dim, FEFamily T_radial, InfMapType T_map>Point InfFE<Dim,T_radial,T_map>::inverse_map (const Elem* inf_elem,					      const Point& physical_point,					      const Real tolerance,					      const bool secure,					      const bool interpolated){  libmesh_assert (inf_elem != NULL);  libmesh_assert (tolerance >= 0.);    // Start logging the map inversion.  START_LOG("inverse_map()", "InfFE");    // 1.)  // build a base element to do the map inversion in the base face  AutoPtr<Elem> base_elem (Base::build_elem (inf_elem));  const Order    base_mapping_order     (base_elem->default_order());  const ElemType base_mapping_elem_type (base_elem->type());  const unsigned int n_base_mapping_sf = Base::n_base_mapping_sf (base_mapping_elem_type,								  base_mapping_order);  const ElemType inf_elem_type = inf_elem->type();  if (inf_elem_type != INFHEX8 &&      inf_elem_type != INFPRISM6)    {      here();      std::cerr << "ERROR: InfFE::inverse_map is currently implemented only for\n"		<< " infinite elments of type InfHex8 and InfPrism6." << std::endl;      libmesh_error();    }    // 2.)  // just like in FE<Dim-1,LAGRANGE>::inverse_map(): compute  // the local coordinates, but only in the base element.  // The radial part can then be computed directly later on.    // How much did the point on the reference  // element change by in this Newton step?  Real inverse_map_error = 0.;      // The point on the reference element.  This is  // the "initial guess" for Newton's method.  The  // centroid seems like a good idea, but computing  // it is a little more intensive than, say taking  // the zero point.    //  // Convergence should be insensitive of this choice  // for "good" elements.  Point p; // the zero point.  No computation required    // Now find the intersection of a plane represented by the base  // element nodes and the line given by the origin of the infinite  // element and the physical point.  Point intersection;  // the origin of the infinite lement  const Point o = inf_elem->origin();   switch (Dim)    {      // unnecessary for 1D    case 1:      {	break;      }    case 2:      {	here();	std::cerr << "ERROR: InfFE::inverse_map is not yet implemented"		  << " in 2d" << std::endl;	libmesh_error();	break;      }    case 3:      {	// references to the nodal points of the base element	const Point& p0 = base_elem->point(0);	const Point& p1 = base_elem->point(1);	const Point& p2 = base_elem->point(2);		// a reference to the physical point	const Point& fp = physical_point;		// The intersection of the plane and the line is given by	// can be computed solving a linear 3x3 system	// a*({p1}-{p0})+b*({p2}-{p0})-c*({fp}-{o})={fp}-{p0}.  		const Real c_factor = -(p1(0)*fp(1)*p0(2)-p1(0)*fp(2)*p0(1)				+fp(0)*p1(2)*p0(1)-p0(0)*fp(1)*p1(2)				+p0(0)*fp(2)*p1(1)+p2(0)*fp(2)*p0(1)				-p2(0)*fp(1)*p0(2)-fp(0)*p2(2)*p0(1)				+fp(0)*p0(2)*p2(1)+p0(0)*fp(1)*p2(2)				-p0(0)*fp(2)*p2(1)-fp(0)*p0(2)*p1(1)				+p0(2)*p2(0)*p1(1)-p0(1)*p2(0)*p1(2)				-fp(0)*p1(2)*p2(1)+p2(1)*p0(0)*p1(2)				-p2(0)*fp(2)*p1(1)-p1(0)*fp(1)*p2(2)				+p2(2)*p1(0)*p0(1)+p1(0)*fp(2)*p2(1)				-p0(2)*p1(0)*p2(1)-p2(2)*p0(0)*p1(1)				+fp(0)*p2(2)*p1(1)+p2(0)*fp(1)*p1(2))/	                        (fp(0)*p1(2)*p0(1)-p1(0)*fp(2)*p0(1)				 +p1(0)*fp(1)*p0(2)-p1(0)*o(1)*p0(2)				 +o(0)*p2(2)*p0(1)-p0(0)*fp(2)*p2(1)				 +p1(0)*o(1)*p2(2)+fp(0)*p0(2)*p2(1)				 -fp(0)*p1(2)*p2(1)-p0(0)*o(1)*p2(2)				 +p0(0)*fp(1)*p2(2)-o(0)*p0(2)*p2(1)				 +o(0)*p1(2)*p2(1)-p2(0)*fp(2)*p1(1)				 +fp(0)*p2(2)*p1(1)-p2(0)*fp(1)*p0(2)				 -o(2)*p0(0)*p1(1)-fp(0)*p0(2)*p1(1)				 +p0(0)*o(1)*p1(2)+p0(0)*fp(2)*p1(1)				 -p0(0)*fp(1)*p1(2)-o(0)*p1(2)*p0(1)				 -p2(0)*o(1)*p1(2)-o(2)*p2(0)*p0(1)				 -o(2)*p1(0)*p2(1)+o(2)*p0(0)*p2(1)				 -fp(0)*p2(2)*p0(1)+o(2)*p2(0)*p1(1)				 +p2(0)*o(1)*p0(2)+p2(0)*fp(1)*p1(2)				 +p2(0)*fp(2)*p0(1)-p1(0)*fp(1)*p2(2)				 +p1(0)*fp(2)*p2(1)-o(0)*p2(2)*p1(1)				 +o(2)*p1(0)*p0(1)+o(0)*p0(2)*p1(1));		// Compute the intersection with	// {intersection} = {fp} + c*({fp}-{o}).	intersection.add_scaled(fp,1.+c_factor);	intersection.add_scaled(o,-c_factor);	break;      }    }   /**   * The number of iterations in the map inversion process.   */  unsigned int cnt = 0;  /**   * Newton iteration loop.   */  do    {            // Increment in current iterate \p p, will be computed.      // Automatically initialized to all zero.  Note that      // in 3D, actually only the first two entries are      // filled by the inverse map, and in 2D only the first.       Point dp;      // The form of the map and how we invert it depends      // on the dimension that we are in.            switch (Dim)	{	  //------------------------------------------------------------------	  // 1D infinite element - no map inversion necessary	case 1:	  {	    break;	  }	  //------------------------------------------------------------------	  // 2D infinite element - 1D map inversion	  //	  // In this iteration scheme only search for the local coordinate	  // in xi direction.  Once xi is determined, the radial coordinate eta is	  // uniquely determined, and there is no need to iterate in that direction.	case 2:	  {	    	    // Where our current iterate \p p maps to.	    const Point physical_guess = FE<1,LAGRANGE>::map (base_elem.get(), p);	    	    // How far our current iterate is from the actual point.	    const Point delta = physical_point - physical_guess;	    const Point dxi = FE<1,LAGRANGE>::map_xi (base_elem.get(), p);	    	    	    // For details on Newton's method see fe_map.C	    	    const Real G = dxi*dxi;	    	    if (secure)	      libmesh_assert (G > 0.);	    	    const Real Ginv = 1./G;	    	    const Real  dxidelta = dxi*delta;	    	    // compute only the first coordinate	    dp(0) = Ginv*dxidelta;	    break;	  }	  	  //------------------------------------------------------------------	  // 3D infinite element - 2D map inversion	  //	  // In this iteration scheme only search for the local coordinates	  // in xi and eta direction.  Once xi, eta are determined, the radial	  // coordinate zeta may directly computed. 	case 3:	  {	    	    // Where our current iterate \p p maps to.	    const Point physical_guess = FE<2,LAGRANGE>::map (base_elem.get(), p);	    	    // How far our current iterate is from the actual point.	    // const Point delta = physical_point - physical_guess;	    const Point delta = intersection - physical_guess;	    const Point dxi  = FE<2,LAGRANGE>::map_xi  (base_elem.get(), p);	    const Point deta = FE<2,LAGRANGE>::map_eta (base_elem.get(), p);	    	    	    // For details on Newton's method see fe_map.C	    	    const Real	      G11 = dxi*dxi,  G12 = dxi*deta,	      G21 = dxi*deta, G22 = deta*deta;	    	    	    const Real det = (G11*G22 - G12*G21);	    	    if (secure)	      {		libmesh_assert (det > 0.);		libmesh_assert (std::abs(det) > 1.e-10);	      }	    const Real inv_det = 1./det;	    	    const Real	      Ginv11 =  G22*inv_det,	      Ginv12 = -G12*inv_det,	      	      Ginv21 = -G21*inv_det,	      Ginv22 =  G11*inv_det;	    	    	    const Real  dxidelta  = dxi*delta;	    const Real  detadelta = deta*delta;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -