📄 fe_monomial.c
字号:
// $Id: fe_monomial.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// Local includes#include "fe.h"#include "fe_macro.h"#include "elem.h"// ------------------------------------------------------------// Monomials-specific implementationstemplate <unsigned int Dim, FEFamily T>void FE<Dim,T>::nodal_soln(const Elem* elem, const Order order, const std::vector<Number>& elem_soln, std::vector<Number>& nodal_soln){ const unsigned int n_nodes = elem->n_nodes(); const ElemType type = elem->type(); nodal_soln.resize(n_nodes); const Order totalorder = static_cast<Order>(order+elem->p_level()); switch (totalorder) { // Constant shape functions case CONSTANT: { libmesh_assert (elem_soln.size() == 1); const Number val = elem_soln[0]; for (unsigned int n=0; n<n_nodes; n++) nodal_soln[n] = val; return; } // For other bases do interpolation at the nodes // explicitly. default: { const unsigned int n_sf = FE<Dim,T>::n_shape_functions(type, totalorder); for (unsigned int n=0; n<n_nodes; n++) { const Point mapped_point = FE<Dim,T>::inverse_map(elem, elem->point(n)); libmesh_assert (elem_soln.size() == n_sf); // Zero before summation nodal_soln[n] = 0; // u_i = Sum (alpha_i phi_i) for (unsigned int i=0; i<n_sf; i++) nodal_soln[n] += elem_soln[i]*FE<Dim,T>::shape(elem, order, i, mapped_point); } return; } }}template <unsigned int Dim, FEFamily T>unsigned int FE<Dim,T>::n_dofs(const ElemType t, const Order o){ switch (o) { // constant shape functions // no matter what shape there is only one DOF. case CONSTANT: return 1; // Discontinuous linear shape functions // expressed in the monomials. case FIRST: { switch (t) { case EDGE2: case EDGE3: case EDGE4: return 2; case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 3; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 4; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } // Discontinuous quadratic shape functions // expressed in the monomials. case SECOND: { switch (t) { case EDGE2: case EDGE3: case EDGE4: return 3; case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 6; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 10; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } // Discontinuous cubic shape functions // expressed in the monomials. case THIRD: { switch (t) { case EDGE2: case EDGE3: case EDGE4: return 4; case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 10; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 20; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } // Discontinuous quartic shape functions // expressed in the monomials. case FOURTH: { switch (t) { case EDGE2: case EDGE3: return 5; case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 15; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 35; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } default: { const unsigned int order = static_cast<unsigned int>(o); switch (t) { case EDGE2: case EDGE3: return (order+1); case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return (order+1)*(order+2)/2; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return (order+1)*(order+2)*(order+3)/6; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } } libmesh_error(); return 0;}template <unsigned int Dim, FEFamily T>unsigned int FE<Dim,T>::n_dofs_at_node(const ElemType, const Order, const unsigned int){ // Monomials elements have no dofs at nodes // (just on the element) return 0;}template <unsigned int Dim, FEFamily T>unsigned int FE<Dim,T>::n_dofs_per_elem(const ElemType t, const Order o){ switch (o) { // constant shape functions always have 1 DOF per element case CONSTANT: return 1; // Discontinuous linear shape functions // expressed in the monomials. case FIRST: { switch (t) { // 1D linears have 2 DOFs per element case EDGE2: case EDGE3: case EDGE4: return 2; // 2D linears have 3 DOFs per element case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 3; // 3D linears have 4 DOFs per element case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 4; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } // Discontinuous quadratic shape functions // expressed in the monomials. case SECOND: { switch (t) { // 1D quadratics have 3 DOFs per element case EDGE2: case EDGE3: case EDGE4: return 3; // 2D quadratics have 6 DOFs per element case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 6; // 3D quadratics have 10 DOFs per element case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 10; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } // Discontinuous cubic shape functions // expressed in the monomials. case THIRD: { switch (t) { case EDGE2: case EDGE3: case EDGE4: return 4; case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 10; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 20; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } // Discontinuous quartic shape functions // expressed in the monomials. case FOURTH: { switch (t) { case EDGE2: case EDGE3: case EDGE4: return 5; case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return 15; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return 35; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } default: { const unsigned int order = static_cast<unsigned int>(o); switch (t) { case EDGE2: case EDGE3: return (order+1); case TRI3: case TRI6: case QUAD4: case QUAD8: case QUAD9: return (order+1)*(order+2)/2; case TET4: case TET10: case HEX8: case HEX20: case HEX27: case PRISM6: case PRISM15: case PRISM18: case PYRAMID5: return (order+1)*(order+2)*(order+3)/6; default: {#ifdef DEBUG std::cerr << "ERROR: Bad ElemType = " << t << " for " << o << "th order approximation!" << std::endl;#endif libmesh_error(); } } } return 0; }}template <unsigned int Dim, FEFamily T>FEContinuity FE<Dim,T>::get_continuity() const{ return DISCONTINUOUS;}template <unsigned int Dim, FEFamily T>bool FE<Dim,T>::is_hierarchic() const{ return true;}#ifdef ENABLE_AMRtemplate <unsigned int Dim, FEFamily T>void FE<Dim,T>::compute_constraints (DofConstraints &, DofMap &, const unsigned int, const Elem*){ // Monomials are discontinuous... No constraints. return;}#endif // #ifdef ENABLE_AMRtemplate <unsigned int Dim, FEFamily T>bool FE<Dim,T>::shapes_need_reinit() const{ return false;}//--------------------------------------------------------------// Explicit instantiation of member functionsINSTANTIATE_MBRF(1,MONOMIAL);INSTANTIATE_MBRF(2,MONOMIAL);INSTANTIATE_MBRF(3,MONOMIAL);#ifdef ENABLE_AMRtemplate void FE<2,MONOMIAL>::compute_constraints(DofConstraints&, DofMap&, const unsigned int, const Elem*);template void FE<3,MONOMIAL>::compute_constraints(DofConstraints&, DofMap&, const unsigned int, const Elem*);#endif // #ifdef ENABLE_AMR
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -