📄 fe_monomial_shape_2d.c
字号:
// $Id: fe_monomial_shape_2D.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// C++ inlcludes// Local includes#include "fe.h"#include "elem.h"template <>Real FE<2,MONOMIAL>::shape(const ElemType, const Order order, const unsigned int i, const Point& p){#if DIM > 1 libmesh_assert (i < (static_cast<unsigned int>(order)+1)* (static_cast<unsigned int>(order)+2)/2); const Real xi = p(0); const Real eta = p(1); switch (i) { // constant case 0: return 1.; // linear case 1: return xi; case 2: return eta; // quadratics case 3: return xi*xi; case 4: return xi*eta; case 5: return eta*eta; // cubics case 6: return xi*xi*xi; case 7: return xi*xi*eta; case 8: return xi*eta*eta; case 9: return eta*eta*eta; // quartics case 10: return xi*xi*xi*xi; case 11: return xi*xi*xi*eta; case 12: return xi*xi*eta*eta; case 13: return xi*eta*eta*eta; case 14: return eta*eta*eta*eta; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int ny = i - (o*(o+1)/2); unsigned int nx = o - ny; Real val = 1.; for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; return val; } libmesh_error(); return 0.;#endif}template <>Real FE<2,MONOMIAL>::shape(const Elem* elem, const Order order, const unsigned int i, const Point& p){ libmesh_assert (elem != NULL); // by default call the orientation-independent shape functions return FE<2,MONOMIAL>::shape(elem->type(), static_cast<Order>(order + elem->p_level()), i, p);}template <>Real FE<2,MONOMIAL>::shape_deriv(const ElemType, const Order order, const unsigned int i, const unsigned int j, const Point& p){#if DIM > 1 libmesh_assert (j<2); libmesh_assert (i < (static_cast<unsigned int>(order)+1)* (static_cast<unsigned int>(order)+2)/2); const Real xi = p(0); const Real eta = p(1); // monomials. since they are hierarchic we only need one case block. switch (j) { // d()/dxi case 0: { switch (i) { // constants case 0: return 0.; // linears case 1: return 1.; case 2: return 0.; // quadratics case 3: return 2.*xi; case 4: return eta; case 5: return 0.; // cubics case 6: return 3.*xi*xi; case 7: return 2.*xi*eta; case 8: return eta*eta; case 9: return 0.; // quartics case 10: return 4.*xi*xi*xi; case 11: return 3.*xi*xi*eta; case 12: return 2.*xi*eta*eta; case 13: return eta*eta*eta; case 14: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int ny = i - (o*(o+1)/2); unsigned int nx = o - ny; Real val = nx; for (unsigned int index=1; index < nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; return val; } } // d()/deta case 1: { switch (i) { // constants case 0: return 0.; // linears case 1: return 0.; case 2: return 1.; // quadratics case 3: return 0.; case 4: return xi; case 5: return 2.*eta; // cubics case 6: return 0.; case 7: return xi*xi; case 8: return 2.*xi*eta; case 9: return 3.*eta*eta; // quartics case 10: return 0.; case 11: return xi*xi*xi; case 12: return 2.*xi*xi*eta; case 13: return 3.*xi*eta*eta; case 14: return 4.*eta*eta*eta; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int ny = i - (o*(o+1)/2); unsigned int nx = o - ny; Real val = ny; for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=1; index < ny; index++) val *= eta; return val; } } } libmesh_error(); return 0.;#endif}template <>Real FE<2,MONOMIAL>::shape_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){ libmesh_assert (elem != NULL); // by default call the orientation-independent shape functions return FE<2,MONOMIAL>::shape_deriv(elem->type(), static_cast<Order>(order + elem->p_level()), i, j, p); }template <>Real FE<2,MONOMIAL>::shape_second_deriv(const ElemType, const Order order, const unsigned int i, const unsigned int j, const Point& p){#if DIM > 1 libmesh_assert (j<=2); libmesh_assert (i < (static_cast<unsigned int>(order)+1)* (static_cast<unsigned int>(order)+2)/2); const Real xi = p(0); const Real eta = p(1); // monomials. since they are hierarchic we only need one case block. switch (j) { // d^2()/dxi^2 case 0: { switch (i) { // constants case 0: // linears case 1: case 2: return 0.; // quadratics case 3: return 2.; case 4: case 5: return 0.; // cubics case 6: return 6.*xi; case 7: return 2.*eta; case 8: case 9: return 0.; // quartics case 10: return 12.*xi*xi; case 11: return 6.*xi*eta; case 12: return 2.*eta*eta; case 13: case 14: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int ny = i - (o*(o+1)/2); unsigned int nx = o - ny; Real val = nx * (nx - 1); for (unsigned int index=2; index < nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; return val; } } // d^2()/dxideta case 1: { switch (i) { // constants case 0: // linears case 1: case 2: return 0.; // quadratics case 3: return 0.; case 4: return 1.; case 5: return 0.; // cubics case 6: return 0.; case 7: return 2.*xi; case 8: return 2.*eta; case 9: return 0.; // quartics case 10: return 0.; case 11: return 3.*xi*xi; case 12: return 4.*xi*eta; case 13: return 3.*eta*eta; case 14: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int ny = i - (o*(o+1)/2); unsigned int nx = o - ny; Real val = nx * ny; for (unsigned int index=1; index < nx; index++) val *= xi; for (unsigned int index=1; index < ny; index++) val *= eta; return val; } } // d^2()/deta^2 case 2: { switch (i) { // constants case 0: // linears case 1: case 2: return 0.; // quadratics case 3: case 4: return 0.; case 5: return 2.; // cubics case 6: return 0.; case 7: return 0.; case 8: return 2.*xi; case 9: return 6.*eta; // quartics case 10: case 11: return 0.; case 12: return 2.*xi*xi; case 13: return 6.*xi*eta; case 14: return 12.*eta*eta; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int ny = i - (o*(o+1)/2); unsigned int nx = o - ny; Real val = ny * (ny - 1); for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=2; index < ny; index++) val *= eta; return val; } } } libmesh_error(); return 0.;#endif}template <>Real FE<2,MONOMIAL>::shape_second_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){ libmesh_assert (elem != NULL); // by default call the orientation-independent shape functions return FE<2,MONOMIAL>::shape_second_deriv(elem->type(), static_cast<Order>(order + elem->p_level()), i, j, p); }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -