📄 fe_monomial_shape_3d.c
字号:
#if DIM == 3 libmesh_assert (j<6); libmesh_assert (i < (static_cast<unsigned int>(order)+1)* (static_cast<unsigned int>(order)+2)* (static_cast<unsigned int>(order)+3)/6); const Real xi = p(0); const Real eta = p(1); const Real zeta = p(2); // monomials. since they are hierarchic we only need one case block. switch (j) { // d^2()/dxi^2 case 0: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: return 2.; case 5: case 6: case 7: case 8: case 9: return 0.; // cubic case 10: return 6.*xi; case 11: return 2.*eta; case 12: case 13: return 0.; case 14: return 2.*zeta; case 15: case 16: case 17: case 18: case 19: return 0.; // quartics case 20: return 12.*xi*xi; case 21: return 6.*xi*eta; case 22: return 2.*eta*eta; case 23: case 24: return 0.; case 25: return 6.*xi*zeta; case 26: return 2.*eta*zeta; case 27: case 28: return 0.; case 29: return 2.*zeta*zeta; case 30: case 31: case 32: case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nx * (nx - 1); for (unsigned int index=2; index < nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; for (unsigned int index=0; index != nz; index++) val *= zeta; return val; } } // d^2()/dxideta case 1: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: return 0.; case 5: return 1.; case 6: case 7: case 8: case 9: return 0.; // cubic case 10: return 0.; case 11: return 2.*xi; case 12: return 2.*eta; case 13: case 14: return 0.; case 15: return zeta; case 16: case 17: case 18: case 19: return 0.; // quartics case 20: return 0.; case 21: return 3.*xi*xi; case 22: return 4.*xi*eta; case 23: return 3.*eta*eta; case 24: case 25: return 0.; case 26: return 2.*xi*zeta; case 27: return 2.*eta*zeta; case 28: case 29: return 0.; case 30: return zeta*zeta; case 31: case 32: case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nx * ny; for (unsigned int index=1; index < nx; index++) val *= xi; for (unsigned int index=1; index < ny; index++) val *= eta; for (unsigned int index=0; index != nz; index++) val *= zeta; return val; } } // d^2()/deta^2 case 2: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: return 0.; case 6: return 2.; case 7: case 8: case 9: return 0.; // cubic case 10: case 11: return 0.; case 12: return 2.*xi; case 13: return 6.*eta; case 14: case 15: return 0.; case 16: return 2.*zeta; case 17: case 18: case 19: return 0.; // quartics case 20: case 21: return 0.; case 22: return 2.*xi*xi; case 23: return 6.*xi*eta; case 24: return 12.*eta*eta; case 25: case 26: return 0.; case 27: return 2.*xi*zeta; case 28: return 6.*eta*zeta; case 29: case 30: return 0.; case 31: return 2.*zeta*zeta; case 32: case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = ny * (ny - 1); for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=2; index < ny; index++) val *= eta; for (unsigned int index=0; index != nz; index++) val *= zeta; return val; } } // d^2()/dxidzeta case 3: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: case 6: return 0.; case 7: return 1.; case 8: case 9: return 0.; // cubic case 10: case 11: case 12: case 13: return 0.; case 14: return 2.*xi; case 15: return eta; case 16: return 0.; case 17: return 2.*zeta; case 18: case 19: return 0.; // quartics case 20: case 21: case 22: case 23: case 24: return 0.; case 25: return 3.*xi*xi; case 26: return 2.*xi*eta; case 27: return eta*eta; case 28: return 0.; case 29: return 4.*xi*zeta; case 30: return 2.*eta*zeta; case 31: return 0.; case 32: return 3.*zeta*zeta; case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nx * nz; for (unsigned int index=1; index < nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; for (unsigned int index=1; index < nz; index++) val *= zeta; return val; } } // d^2()/detadzeta case 4: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: case 6: case 7: return 0.; case 8: return 1.; case 9: return 0.; // cubic case 10: case 11: case 12: case 13: case 14: return 0.; case 15: return xi; case 16: return 2.*eta; case 17: return 0.; case 18: return 2.*zeta; case 19: return 0.; // quartics case 20: case 21: case 22: case 23: case 24: case 25: return 0.; case 26: return xi*xi; case 27: return 2.*xi*eta; case 28: return 3.*eta*eta; case 29: return 0.; case 30: return 2.*xi*zeta; case 31: return 4.*eta*zeta; case 32: return 0.; case 33: return 3.*zeta*zeta; case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = ny * nz; for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=1; index < ny; index++) val *= eta; for (unsigned int index=1; index < nz; index++) val *= zeta; return val; } } // d^2()/dzeta^2 case 5: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: case 6: case 7: case 8: return 0.; case 9: return 2.; // cubic case 10: case 11: case 12: case 13: case 14: case 15: case 16: return 0.; case 17: return 2.*xi; case 18: return 2.*eta; case 19: return 6.*zeta; // quartics case 20: case 21: case 22: case 23: case 24: case 25: case 26: case 27: case 28: return 0.; case 29: return 2.*xi*xi; case 30: return 2.*xi*eta; case 31: return 2.*eta*eta; case 32: return 6.*xi*zeta; case 33: return 6.*eta*zeta; case 34: return 12.*zeta*zeta; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nz * (nz - 1); for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; for (unsigned int index=2; index < nz; index++) val *= zeta; return val; } } default: libmesh_error(); }#endif libmesh_error(); return 0.; }template <>Real FE<3,MONOMIAL>::shape_second_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){ libmesh_assert (elem != NULL); // call the orientation-independent shape function derivatives return FE<3,MONOMIAL>::shape_second_deriv(elem->type(), static_cast<Order>(order + elem->p_level()), i, j, p);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -