📄 fe_monomial_shape_3d.c
字号:
// $Id: fe_monomial_shape_3D.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// C++ inlcludes// Local includes#include "fe.h"#include "elem.h"template <>Real FE<3,MONOMIAL>::shape(const ElemType, const Order order, const unsigned int i, const Point& p){#if DIM == 3 const Real xi = p(0); const Real eta = p(1); const Real zeta = p(2); libmesh_assert (i < (static_cast<unsigned int>(order)+1)* (static_cast<unsigned int>(order)+2)* (static_cast<unsigned int>(order)+3)/6); // monomials. since they are hierarchic we only need one case block. switch (i) { // constant case 0: return 1.; // linears case 1: return xi; case 2: return eta; case 3: return zeta; // quadratics case 4: return xi*xi; case 5: return xi*eta; case 6: return eta*eta; case 7: return xi*zeta; case 8: return zeta*eta; case 9: return zeta*zeta; // cubics case 10: return xi*xi*xi; case 11: return xi*xi*eta; case 12: return xi*eta*eta; case 13: return eta*eta*eta; case 14: return xi*xi*zeta; case 15: return xi*eta*zeta; case 16: return eta*eta*zeta; case 17: return xi*zeta*zeta; case 18: return eta*zeta*zeta; case 19: return zeta*zeta*zeta; // quartics case 20: return xi*xi*xi*xi; case 21: return xi*xi*xi*eta; case 22: return xi*xi*eta*eta; case 23: return xi*eta*eta*eta; case 24: return eta*eta*eta*eta; case 25: return xi*xi*xi*zeta; case 26: return xi*xi*eta*zeta; case 27: return xi*eta*eta*zeta; case 28: return eta*eta*eta*zeta; case 29: return xi*xi*zeta*zeta; case 30: return xi*eta*zeta*zeta; case 31: return eta*eta*zeta*zeta; case 32: return xi*zeta*zeta*zeta; case 33: return eta*zeta*zeta*zeta; case 34: return zeta*zeta*zeta*zeta; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = 1.; for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; for (unsigned int index=0; index != nz; index++) val *= zeta; return val; }#endif libmesh_error(); return 0.;}template <>Real FE<3,MONOMIAL>::shape(const Elem* elem, const Order order, const unsigned int i, const Point& p){ libmesh_assert (elem != NULL); // call the orientation-independent shape functions return FE<3,MONOMIAL>::shape(elem->type(), static_cast<Order>(order + elem->p_level()), i, p);}template <>Real FE<3,MONOMIAL>::shape_deriv(const ElemType, const Order order, const unsigned int i, const unsigned int j, const Point& p){#if DIM == 3 libmesh_assert (j<3); libmesh_assert (i < (static_cast<unsigned int>(order)+1)* (static_cast<unsigned int>(order)+2)* (static_cast<unsigned int>(order)+3)/6); const Real xi = p(0); const Real eta = p(1); const Real zeta = p(2); // monomials. since they are hierarchic we only need one case block. switch (j) { // d()/dxi case 0: { switch (i) { // constant case 0: return 0.; // linear case 1: return 1.; case 2: return 0.; case 3: return 0.; // quadratic case 4: return 2.*xi; case 5: return eta; case 6: return 0.; case 7: return zeta; case 8: return 0.; case 9: return 0.; // cubic case 10: return 3.*xi*xi; case 11: return 2.*xi*eta; case 12: return eta*eta; case 13: return 0.; case 14: return 2.*xi*zeta; case 15: return eta*zeta; case 16: return 0.; case 17: return zeta*zeta; case 18: return 0.; case 19: return 0.; // quartics case 20: return 4.*xi*xi*xi; case 21: return 3.*xi*xi*eta; case 22: return 2.*xi*eta*eta; case 23: return eta*eta*eta; case 24: return 0.; case 25: return 3.*xi*xi*zeta; case 26: return 2.*xi*eta*zeta; case 27: return eta*eta*zeta; case 28: return 0.; case 29: return 2.*xi*zeta*zeta; case 30: return eta*zeta*zeta; case 31: return 0.; case 32: return zeta*zeta*zeta; case 33: return 0.; case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nx; for (unsigned int index=1; index < nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; for (unsigned int index=0; index != nz; index++) val *= zeta; return val; } } // d()/deta case 1: { switch (i) { // constant case 0: return 0.; // linear case 1: return 0.; case 2: return 1.; case 3: return 0.; // quadratic case 4: return 0.; case 5: return xi; case 6: return 2.*eta; case 7: return 0.; case 8: return zeta; case 9: return 0.; // cubic case 10: return 0.; case 11: return xi*xi; case 12: return 2.*xi*eta; case 13: return 3.*eta*eta; case 14: return 0.; case 15: return xi*zeta; case 16: return 2.*eta*zeta; case 17: return 0.; case 18: return zeta*zeta; case 19: return 0.; // quartics case 20: return 0.; case 21: return xi*xi*xi; case 22: return 2.*xi*xi*eta; case 23: return 3.*xi*eta*eta; case 24: return 4.*eta*eta*eta; case 25: return 0.; case 26: return xi*xi*zeta; case 27: return 2.*xi*eta*zeta; case 28: return 3.*eta*eta*zeta; case 29: return 0.; case 30: return xi*zeta*zeta; case 31: return 2.*eta*zeta*zeta; case 32: return 0.; case 33: return zeta*zeta*zeta; case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = ny; for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=1; index < ny; index++) val *= eta; for (unsigned int index=0; index != nz; index++) val *= zeta; return val; } } // d()/dzeta case 2: { switch (i) { // constant case 0: return 0.; // linear case 1: return 0.; case 2: return 0.; case 3: return 1.; // quadratic case 4: return 0.; case 5: return 0.; case 6: return 0.; case 7: return xi; case 8: return eta; case 9: return 2.*zeta; // cubic case 10: return 0.; case 11: return 0.; case 12: return 0.; case 13: return 0.; case 14: return xi*xi; case 15: return xi*eta; case 16: return eta*eta; case 17: return 2.*xi*zeta; case 18: return 2.*eta*zeta; case 19: return 3.*zeta*zeta; // quartics case 20: return 0.; case 21: return 0.; case 22: return 0.; case 23: return 0.; case 24: return 0.; case 25: return xi*xi*xi; case 26: return xi*xi*eta; case 27: return xi*eta*eta; case 28: return eta*eta*eta; case 29: return 2.*xi*xi*zeta; case 30: return 2.*xi*eta*zeta; case 31: return 2.*eta*eta*zeta; case 32: return 3.*xi*zeta*zeta; case 33: return 3.*eta*zeta*zeta; case 34: return 4.*zeta*zeta*zeta; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nz; for (unsigned int index=0; index != nx; index++) val *= xi; for (unsigned int index=0; index != ny; index++) val *= eta; for (unsigned int index=1; index < nz; index++) val *= zeta; return val; } } }#endif libmesh_error(); return 0.; }template <>Real FE<3,MONOMIAL>::shape_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){ libmesh_assert (elem != NULL); // call the orientation-independent shape function derivatives return FE<3,MONOMIAL>::shape_deriv(elem->type(), static_cast<Order>(order + elem->p_level()), i, j, p);}template <>Real FE<3,MONOMIAL>::shape_second_deriv(const ElemType, const Order order, const unsigned int i, const unsigned int j, const Point& p){
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -