⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fe_xyz_shape_1d.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
// $Id: fe_xyz_shape_1D.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// C++ inlcludes// Local includes#include "fe.h"#include "elem.h"// Anonymous namespace for persistant variables.// This allows us to determine when the centroid needs// to be recalculated.namespace{  static unsigned int old_elem_id = libMesh::invalid_uint;  static Point centroid;}template <>Real FE<1,XYZ>::shape(const ElemType,		      const Order,		      const unsigned int,		      const Point&){  std::cerr << "XYZ polynomials require the element\n"            << "because the centroid is needed."            << std::endl;    libmesh_error();  return 0.;}template <>Real FE<1,XYZ>::shape(const Elem* elem,		      const Order order,		      const unsigned int i,		      const Point& p){  libmesh_assert (elem != NULL);  libmesh_assert (i <= order + elem->p_level());  // Only recompute the centroid if the element  // has changed from the last one we computed.  // This avoids repeated centroid calculations  // when called in succession with the same element.  if (elem->id() != old_elem_id)    {      centroid = elem->centroid();      old_elem_id = elem->id();    }      const Real x  = p(0);  const Real xc = centroid(0);  const Real dx = x - xc;  // monomials. since they are hierarchic we only need one case block.  switch (i)    {    case 0:      return 1.;    case 1:      return dx;        case 2:      return dx*dx;        case 3:      return dx*dx*dx;        case 4:      return dx*dx*dx*dx;        default:      Real val = 1.;      for (unsigned int index = 0; index != i; ++index)        val *= dx;      return val;    }        libmesh_error();  return 0.;}template <>Real FE<1,XYZ>::shape_deriv(const ElemType,			    const Order,			    const unsigned int,			    const unsigned int,			    const Point&){  std::cerr << "XYZ polynomials require the element\n"            << "because the centroid is needed."            << std::endl;    libmesh_error();  return 0.;}template <>Real FE<1,XYZ>::shape_deriv(const Elem* elem,			    const Order order,			    const unsigned int i,			    const unsigned int j,			    const Point& p){  libmesh_assert (elem != NULL);  libmesh_assert (i <= order + elem->p_level());    // only d()/dxi in 1D!    libmesh_assert (j == 0);	  // Only recompute the centroid if the element  // has changed from the last one we computed.  // This avoids repeated centroid calculations  // when called in succession with the same element.  if (elem->id() != old_elem_id)    {      centroid = elem->centroid();      old_elem_id = elem->id();    }      const Real x  = p(0);  const Real xc = centroid(0);  const Real dx = x - xc;  // monomials. since they are hierarchic we only need one case block.  switch (i)    {    case 0:      return 0.;    case 1:      return 1.;        case 2:      return 2.*dx;        case 3:      return 3.*dx*dx;        case 4:      return 4.*dx*dx*dx;        default:      Real val = i;      for (unsigned int index = 1; index != i; ++index)        val *= dx;      return val;    }  libmesh_error();  return 0.;}template <>Real FE<1,XYZ>::shape_second_deriv(const ElemType,			           const Order,			           const unsigned int,			           const unsigned int,			           const Point&){  std::cerr << "XYZ polynomials require the element\n"            << "because the centroid is needed."            << std::endl;    libmesh_error();  return 0.;}template <>Real FE<1,XYZ>::shape_second_deriv(const Elem* elem,			           const Order order,			           const unsigned int i,			           const unsigned int j,			           const Point& p){  libmesh_assert (elem != NULL);  libmesh_assert (i <= order + elem->p_level());    // only d2()/dxi2 in 1D!    libmesh_assert (j == 0);	  // Only recompute the centroid if the element  // has changed from the last one we computed.  // This avoids repeated centroid calculations  // when called in succession with the same element.  if (elem->id() != old_elem_id)    {      centroid = elem->centroid();      old_elem_id = elem->id();    }      const Real x  = p(0);  const Real xc = centroid(0);  const Real dx = x - xc;  // monomials. since they are hierarchic we only need one case block.  switch (i)    {    case 0:    case 1:      return 0.;        case 2:      return 2.;        case 3:      return 6.*dx;        case 4:      return 12.*dx*dx;        default:      Real val = 2.;      for (unsigned int index = 2; index != i; ++index)        val *= (index+1) * dx;      return val;    }  libmesh_error();  return 0.;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -