📄 fe_xyz_shape_2d.c
字号:
// $Id: fe_xyz_shape_2D.C 2922 2008-07-08 21:48:10Z jwpeterson $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// C++ inlcludes// Local includes#include "fe.h"#include "elem.h"// Anonymous namespace for persistant variables.// This allows us to determine when the centroid needs// to be recalculated.namespace{ static unsigned int old_elem_id = libMesh::invalid_uint; static Point centroid;}template <>Real FE<2,XYZ>::shape(const ElemType, const Order, const unsigned int, const Point&){ std::cerr << "XYZ polynomials require the element\n" << "because the centroid is needed." << std::endl; libmesh_error(); return 0.;}template <>Real FE<2,XYZ>::shape(const Elem* elem, const Order order, const unsigned int i, const Point& p){#if DIM > 1 libmesh_assert (elem != NULL); // Only recompute the centroid if the element // has changed from the last one we computed. // This avoids repeated centroid calculations // when called in succession with the same element. if (elem->id() != old_elem_id) { centroid = elem->centroid(); old_elem_id = elem->id(); } const Real x = p(0); const Real y = p(1); const Real xc = centroid(0); const Real yc = centroid(1); const Real dx = x - xc; const Real dy = y - yc;#ifndef NDEBUG // totalorder is only used in the assertion below, so // we avoid declaring it when asserts are not active. const unsigned int totalorder = order + elem->p_level();#endif libmesh_assert (i < (totalorder+1)*(totalorder+2)/2); // monomials. since they are hierarchic we only need one case block. switch (i) { // constant case 0: return 1.; // linear case 1: return dx; case 2: return dy; // quadratics case 3: return dx*dx; case 4: return dx*dy; case 5: return dy*dy; // cubics case 6: return dx*dx*dx; case 7: return dx*dx*dy; case 8: return dx*dy*dy; case 9: return dy*dy*dy; // quartics case 10: return dx*dx*dx*dx; case 11: return dx*dx*dx*dy; case 12: return dx*dx*dy*dy; case 13: return dx*dy*dy*dy; case 14: return dy*dy*dy*dy; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int i2 = i - (o*(o+1)/2); Real val = 1.; for (unsigned int index=i2; index != o; index++) val *= dx; for (unsigned int index=0; index != i2; index++) val *= dy; return val; } libmesh_error(); return 0.;#endif}template <>Real FE<2,XYZ>::shape_deriv(const ElemType, const Order, const unsigned int, const unsigned int, const Point&){ std::cerr << "XYZ polynomials require the element\n" << "because the centroid is needed." << std::endl; libmesh_error(); return 0.;}template <>Real FE<2,XYZ>::shape_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){#if DIM > 1 libmesh_assert (j<2); libmesh_assert (elem != NULL); // Only recompute the centroid if the element // has changed from the last one we computed. // This avoids repeated centroid calculations // when called in succession with the same element. if (elem->id() != old_elem_id) { centroid = elem->centroid(); old_elem_id = elem->id(); } const Real x = p(0); const Real y = p(1); const Real xc = centroid(0); const Real yc = centroid(1); const Real dx = x - xc; const Real dy = y - yc;#ifndef NDEBUG // totalorder is only used in the assertion below, so // we avoid declaring it when asserts are not active. const unsigned int totalorder = order + elem->p_level();#endif libmesh_assert (i < (totalorder+1)*(totalorder+2)/2); // monomials. since they are hierarchic we only need one case block.switch (j) { // d()/dx case 0: { switch (i) { // constants case 0: return 0.; // linears case 1: return 1.; case 2: return 0.; // quadratics case 3: return 2.*dx; case 4: return dy; case 5: return 0.; // cubics case 6: return 3.*dx*dx; case 7: return 2.*dx*dy; case 8: return dy*dy; case 9: return 0.; // quartics case 10: return 4.*dx*dx*dx; case 11: return 3.*dx*dx*dy; case 12: return 2.*dx*dy*dy; case 13: return dy*dy*dy; case 14: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int i2 = i - (o*(o+1)/2); Real val = o - i2; for (unsigned int index=i2+1; index < o; index++) val *= dx; for (unsigned int index=0; index != i2; index++) val *= dy; return val; } } // d()/dy case 1: { switch (i) { // constants case 0: return 0.; // linears case 1: return 0.; case 2: return 1.; // quadratics case 3: return 0.; case 4: return dx; case 5: return 2.*dy; // cubics case 6: return 0.; case 7: return dx*dx; case 8: return 2.*dx*dy; case 9: return 3.*dy*dy; // quartics case 10: return 0.; case 11: return dx*dx*dx; case 12: return 2.*dx*dx*dy; case 13: return 3.*dx*dy*dy; case 14: return 4.*dy*dy*dy; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int i2 = i - (o*(o+1)/2); Real val = i2; for (unsigned int index=i2; index != o; index++) val *= dx; for (unsigned int index=1; index <= i2; index++) val *= dy; return val; } } default: libmesh_error(); } libmesh_error(); return 0.;#endif}template <>Real FE<2,XYZ>::shape_second_deriv(const ElemType, const Order, const unsigned int, const unsigned int, const Point&){ std::cerr << "XYZ polynomials require the element\n" << "because the centroid is needed." << std::endl; libmesh_error(); return 0.;}template <>Real FE<2,XYZ>::shape_second_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){#if DIM > 1 libmesh_assert (j<=2); libmesh_assert (elem != NULL); // Only recompute the centroid if the element // has changed from the last one we computed. // This avoids repeated centroid calculations // when called in succession with the same element. if (elem->id() != old_elem_id) { centroid = elem->centroid(); old_elem_id = elem->id(); } const Real x = p(0); const Real y = p(1); const Real xc = centroid(0); const Real yc = centroid(1); const Real dx = x - xc; const Real dy = y - yc;#ifndef NDEBUG // totalorder is only used in the assertion below, so // we avoid declaring it when asserts are not active. const unsigned int totalorder = order + elem->p_level();#endif libmesh_assert (i < (totalorder+1)*(totalorder+2)/2); // monomials. since they are hierarchic we only need one case block. switch (j) { // d^2()/dx^2 case 0: { switch (i) { // constants case 0: // linears case 1: case 2: return 0.; // quadratics case 3: return 2.; case 4: case 5: return 0.; // cubics case 6: return 6.*dx; case 7: return 2.*dy; case 8: case 9: return 0.; // quartics case 10: return 12.*dx*dx; case 11: return 6.*dx*dy; case 12: return 2.*dy*dy; case 13: case 14: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int i2 = i - (o*(o+1)/2); Real val = (o - i2) * (o - i2 - 1); for (unsigned int index=i2+2; index < o; index++) val *= dx; for (unsigned int index=0; index != i2; index++) val *= dy; return val; } } // d^2()/dxdy case 1: { switch (i) { // constants case 0: // linears case 1: case 2: return 0.; // quadratics case 3: return 0.; case 4: return 1.; case 5: return 0.; // cubics case 6: return 0.; case 7: return 2.*dx; case 8: return 2.*dy; case 9: return 0.; // quartics case 10: return 0.; case 11: return 3.*dx*dx; case 12: return 4.*dx*dy; case 13: return 3.*dy*dy; case 14: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int i2 = i - (o*(o+1)/2); Real val = (o - i2) * i2; for (unsigned int index=i2+1; index < o; index++) val *= dx; for (unsigned int index=1; index < i2; index++) val *= dy; return val; } } // d^2()/dy^2 case 2: { switch (i) { // constants case 0: // linears case 1: case 2: return 0.; // quadratics case 3: case 4: return 0.; case 5: return 2.; // cubics case 6: return 0.; case 7: return 0.; case 8: return 2.*dx; case 9: return 6.*dy; // quartics case 10: case 11: return 0.; case 12: return 2.*dx*dx; case 13: return 6.*dx*dy; case 14: return 12.*dy*dy; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)/2; o++) { } unsigned int i2 = i - (o*(o+1)/2); Real val = i2 * (i2 - 1); for (unsigned int index=i2; index != o; index++) val *= dx; for (unsigned int index=2; index < i2; index++) val *= dy; return val; } } } libmesh_error(); return 0.;#endif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -