⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fe_xyz_shape_3d.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
📖 第 1 页 / 共 2 页
字号:
    default:      libmesh_error();    }#endif    libmesh_error();  return 0.;  }template <>Real FE<3,XYZ>::shape_second_deriv(const ElemType,			           const Order,			           const unsigned int,			           const unsigned int,			           const Point&){  std::cerr << "XYZ polynomials require the element\n"            << "because the centroid is needed."            << std::endl;    libmesh_error();  return 0.;}template <>Real FE<3,XYZ>::shape_second_deriv(const Elem* elem,			           const Order order,			           const unsigned int i,			           const unsigned int j,			           const Point& p){#if DIM == 3  libmesh_assert (elem != NULL);  libmesh_assert (j<3);    // Only recompute the centroid if the element  // has changed from the last one we computed.  // This avoids repeated centroid calculations  // when called in succession with the same element.  if (elem->id() != old_elem_id)    {      centroid = elem->centroid();      old_elem_id = elem->id();    }      const Real x  = p(0);  const Real y  = p(1);  const Real z  = p(2);  const Real xc = centroid(0);  const Real yc = centroid(1);  const Real zc = centroid(2);  const Real dx = x - xc;  const Real dy = y - yc;  const Real dz = z - zc;#ifndef NDEBUG  // totalorder is only used in the assertion below, so  // we avoid declaring it when asserts are not active.  const unsigned int totalorder = static_cast<Order>(order + elem->p_level());#endif  libmesh_assert (i < (static_cast<unsigned int>(totalorder)+1)*              (static_cast<unsigned int>(totalorder)+2)*              (static_cast<unsigned int>(totalorder)+2)/6);    // monomials. since they are hierarchic we only need one case block.  switch (j)    {      // d^2()/dx^2    case 0:      {        switch (i)  	{  	  // constant  	case 0:  	    	  // linear  	case 1:  	case 2:  	case 3:  	  return 0.;  	  // quadratic  	case 4:  	  return 2.;  	    	case 5:  	case 6:  	case 7:  	case 8:  	case 9:  	  return 0.;  	  // cubic  	case 10:  	  return 6.*dx;  	case 11:  	  return 2.*dy;  	case 12:  	case 13:  	  return 0.;  	case 14:  	  return 2.*dz;  	case 15:  	case 16:  	case 17:  	case 18:  	case 19:  	  return 0.;  	  // quartics  	case 20:  	  return 12.*dx*dx;  	case 21:  	  return 6.*dx*dy;  	case 22:  	  return 2.*dy*dy;  	case 23:  	case 24:  	  return 0.;  	case 25:  	  return 6.*dx*dz;  	case 26:  	  return 2.*dy*dz;  	case 27:  	case 28:  	  return 0.;  	case 29:  	  return 2.*dz*dz;  	case 30:  	case 31:  	case 32:  	case 33:  	case 34:  	  return 0.;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = nx * (nx - 1);          for (unsigned int index=2; index < nx; index++)            val *= dx;          for (unsigned int index=0; index != ny; index++)            val *= dy;          for (unsigned int index=0; index != nz; index++)            val *= dz;          return val;  	}      }      // d^2()/dxdy    case 1:      {        switch (i)  	{  	  // constant  	case 0:  	    	  // linear  	case 1:  	case 2:  	case 3:  	  return 0.;  	  // quadratic  	case 4:  	  return 0.;  	case 5:  	  return 1.;  	case 6:  	case 7:  	case 8:  	case 9:  	  return 0.;  	  // cubic  	case 10:  	  return 0.;  	case 11:  	  return 2.*dx;  	case 12:  	  return 2.*dy;  	case 13:  	case 14:  	  return 0.;  	case 15:  	  return dz;  	case 16:  	case 17:  	case 18:  	case 19:  	  return 0.;  	  // quartics  	case 20:  	  return 0.;  	case 21:  	  return 3.*dx*dx;  	case 22:  	  return 4.*dx*dy;  	case 23:  	  return 3.*dy*dy;  	case 24:  	case 25:  	  return 0.;  	case 26:  	  return 2.*dx*dz;  	case 27:  	  return 2.*dy*dz;  	case 28:  	case 29:  	  return 0.;  	case 30:  	  return dz*dz;  	case 31:  	case 32:  	case 33:  	case 34:  	  return 0.;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = nx * ny;          for (unsigned int index=1; index < nx; index++)            val *= dx;          for (unsigned int index=1; index < ny; index++)            val *= dy;          for (unsigned int index=0; index != nz; index++)            val *= dz;          return val;  	}      }            // d^2()/dy^2    case 2:      {        switch (i)  	{  	  // constant  	case 0:  	    	  // linear  	case 1:  	case 2:  	case 3:  	  return 0.;  	  // quadratic  	case 4:  	case 5:  	  return 0.;  	    	case 6:  	  return 2.;  	case 7:  	case 8:  	case 9:  	  return 0.;  	  // cubic  	case 10:  	case 11:  	  return 0.;  	case 12:  	  return 2.*dx;  	case 13:  	  return 6.*dy;  	case 14:  	case 15:  	  return 0.;  	case 16:  	  return 2.*dz;  	case 17:  	case 18:  	case 19:  	  return 0.;  	  // quartics  	case 20:  	case 21:  	  return 0.;  	case 22:  	  return 2.*dx*dx;  	case 23:  	  return 6.*dx*dy;  	case 24:  	  return 12.*dy*dy;  	case 25:  	case 26:  	  return 0.;  	case 27:  	  return 2.*dx*dz;  	case 28:  	  return 6.*dy*dz;  	case 29:  	case 30:  	  return 0.;  	case 31:  	  return 2.*dz*dz;  	case 32:  	case 33:  	case 34:  	  return 0.;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = ny * (ny - 1);          for (unsigned int index=0; index != nx; index++)            val *= dx;          for (unsigned int index=2; index < ny; index++)            val *= dy;          for (unsigned int index=0; index != nz; index++)            val *= dz;          return val;  	}      }            // d^2()/dxdz    case 3:      {        switch (i)  	{  	  // constant  	case 0:  	    	  // linear  	case 1:  	case 2:  	case 3:  	  return 0.;  	  // quadratic  	case 4:  	case 5:  	case 6:  	  return 0.;  	case 7:  	  return 1.;  	    	case 8:  	case 9:  	  return 0.;  	  // cubic  	case 10:  	case 11:  	case 12:  	case 13:  	  return 0.;  	case 14:  	  return 2.*dx;  	case 15:  	  return dy;  	case 16:  	  return 0.;  	case 17:  	  return 2.*dz;  	case 18:  	case 19:  	  return 0.;  	  // quartics  	case 20:  	case 21:  	case 22:  	case 23:  	case 24:  	  return 0.;  	case 25:  	  return 3.*dx*dx;  	case 26:  	  return 2.*dx*dy;  	case 27:  	  return dy*dy;  	case 28:  	  return 0.;  	case 29:  	  return 4.*dx*dz;  	case 30:  	  return 2.*dy*dz;  	case 31:  	  return 0.;  	case 32:  	  return 3.*dz*dz;  	case 33:  	case 34:  	  return 0.;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = nx * nz;          for (unsigned int index=1; index < nx; index++)            val *= dx;          for (unsigned int index=0; index != ny; index++)            val *= dy;          for (unsigned int index=1; index < nz; index++)            val *= dz;          return val;  	}      }      // d^2()/dydz    case 4:      {        switch (i)  	{  	  // constant  	case 0:  	    	  // linear  	case 1:  	case 2:  	case 3:  	  return 0.;  	  // quadratic  	case 4:  	case 5:  	case 6:  	case 7:  	  return 0.;  	case 8:  	  return 1.;  	    	case 9:  	  return 0.;  	  // cubic  	case 10:  	case 11:  	case 12:  	case 13:  	case 14:  	  return 0.;  	case 15:  	  return dx;  	case 16:  	  return 2.*dy;  	case 17:  	  return 0.;  	case 18:  	  return 2.*dz;  	case 19:  	  return 0.;  	  // quartics  	case 20:  	case 21:  	case 22:  	case 23:  	case 24:  	case 25:  	  return 0.;  	case 26:  	  return dx*dx;  	case 27:  	  return 2.*dx*dy;  	case 28:  	  return 3.*dy*dy;  	case 29:  	  return 0.;  	case 30:  	  return 2.*dx*dz;  	case 31:  	  return 4.*dy*dz;  	case 32:  	  return 0.;  	case 33:  	  return 3.*dz*dz;  	case 34:  	  return 0.;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = ny * nz;          for (unsigned int index=0; index != nx; index++)            val *= dx;          for (unsigned int index=1; index < ny; index++)            val *= dy;          for (unsigned int index=1; index < nz; index++)            val *= dz;          return val;  	}      }      // d^2()/dz^2    case 5:      {        switch (i)  	{  	  // constant  	case 0:  	    	  // linear  	case 1:  	case 2:  	case 3:  	  return 0.;  	  // quadratic  	case 4:  	case 5:  	case 6:  	case 7:  	case 8:  	  return 0.;  	case 9:  	  return 2.;  	  // cubic  	case 10:  	case 11:  	case 12:  	case 13:  	case 14:  	case 15:  	case 16:  	  return 0.;  	case 17:  	  return 2.*dx;  	case 18:  	  return 2.*dy;  	case 19:  	  return 6.*dz;  	  // quartics  	case 20:  	case 21:  	case 22:  	case 23:  	case 24:  	case 25:  	case 26:  	case 27:  	case 28:  	  return 0.;  	case 29:  	  return 2.*dx*dx;  	case 30:  	  return 2.*dx*dy;  	case 31:  	  return 2.*dy*dy;  	case 32:  	  return 6.*dx*dz;  	case 33:  	  return 6.*dy*dz;  	case 34:  	  return 12.*dz*dz;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = nz * (nz - 1);          for (unsigned int index=0; index != nx; index++)            val *= dx;          for (unsigned int index=0; index != ny; index++)            val *= dy;          for (unsigned int index=2; index < nz; index++)            val *= dz;          return val;  	}      }          default:      libmesh_error();    }#endif    libmesh_error();  return 0.;  }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -