📄 fe_xyz_shape_3d.c
字号:
default: libmesh_error(); }#endif libmesh_error(); return 0.; }template <>Real FE<3,XYZ>::shape_second_deriv(const ElemType, const Order, const unsigned int, const unsigned int, const Point&){ std::cerr << "XYZ polynomials require the element\n" << "because the centroid is needed." << std::endl; libmesh_error(); return 0.;}template <>Real FE<3,XYZ>::shape_second_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){#if DIM == 3 libmesh_assert (elem != NULL); libmesh_assert (j<3); // Only recompute the centroid if the element // has changed from the last one we computed. // This avoids repeated centroid calculations // when called in succession with the same element. if (elem->id() != old_elem_id) { centroid = elem->centroid(); old_elem_id = elem->id(); } const Real x = p(0); const Real y = p(1); const Real z = p(2); const Real xc = centroid(0); const Real yc = centroid(1); const Real zc = centroid(2); const Real dx = x - xc; const Real dy = y - yc; const Real dz = z - zc;#ifndef NDEBUG // totalorder is only used in the assertion below, so // we avoid declaring it when asserts are not active. const unsigned int totalorder = static_cast<Order>(order + elem->p_level());#endif libmesh_assert (i < (static_cast<unsigned int>(totalorder)+1)* (static_cast<unsigned int>(totalorder)+2)* (static_cast<unsigned int>(totalorder)+2)/6); // monomials. since they are hierarchic we only need one case block. switch (j) { // d^2()/dx^2 case 0: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: return 2.; case 5: case 6: case 7: case 8: case 9: return 0.; // cubic case 10: return 6.*dx; case 11: return 2.*dy; case 12: case 13: return 0.; case 14: return 2.*dz; case 15: case 16: case 17: case 18: case 19: return 0.; // quartics case 20: return 12.*dx*dx; case 21: return 6.*dx*dy; case 22: return 2.*dy*dy; case 23: case 24: return 0.; case 25: return 6.*dx*dz; case 26: return 2.*dy*dz; case 27: case 28: return 0.; case 29: return 2.*dz*dz; case 30: case 31: case 32: case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nx * (nx - 1); for (unsigned int index=2; index < nx; index++) val *= dx; for (unsigned int index=0; index != ny; index++) val *= dy; for (unsigned int index=0; index != nz; index++) val *= dz; return val; } } // d^2()/dxdy case 1: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: return 0.; case 5: return 1.; case 6: case 7: case 8: case 9: return 0.; // cubic case 10: return 0.; case 11: return 2.*dx; case 12: return 2.*dy; case 13: case 14: return 0.; case 15: return dz; case 16: case 17: case 18: case 19: return 0.; // quartics case 20: return 0.; case 21: return 3.*dx*dx; case 22: return 4.*dx*dy; case 23: return 3.*dy*dy; case 24: case 25: return 0.; case 26: return 2.*dx*dz; case 27: return 2.*dy*dz; case 28: case 29: return 0.; case 30: return dz*dz; case 31: case 32: case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nx * ny; for (unsigned int index=1; index < nx; index++) val *= dx; for (unsigned int index=1; index < ny; index++) val *= dy; for (unsigned int index=0; index != nz; index++) val *= dz; return val; } } // d^2()/dy^2 case 2: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: return 0.; case 6: return 2.; case 7: case 8: case 9: return 0.; // cubic case 10: case 11: return 0.; case 12: return 2.*dx; case 13: return 6.*dy; case 14: case 15: return 0.; case 16: return 2.*dz; case 17: case 18: case 19: return 0.; // quartics case 20: case 21: return 0.; case 22: return 2.*dx*dx; case 23: return 6.*dx*dy; case 24: return 12.*dy*dy; case 25: case 26: return 0.; case 27: return 2.*dx*dz; case 28: return 6.*dy*dz; case 29: case 30: return 0.; case 31: return 2.*dz*dz; case 32: case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = ny * (ny - 1); for (unsigned int index=0; index != nx; index++) val *= dx; for (unsigned int index=2; index < ny; index++) val *= dy; for (unsigned int index=0; index != nz; index++) val *= dz; return val; } } // d^2()/dxdz case 3: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: case 6: return 0.; case 7: return 1.; case 8: case 9: return 0.; // cubic case 10: case 11: case 12: case 13: return 0.; case 14: return 2.*dx; case 15: return dy; case 16: return 0.; case 17: return 2.*dz; case 18: case 19: return 0.; // quartics case 20: case 21: case 22: case 23: case 24: return 0.; case 25: return 3.*dx*dx; case 26: return 2.*dx*dy; case 27: return dy*dy; case 28: return 0.; case 29: return 4.*dx*dz; case 30: return 2.*dy*dz; case 31: return 0.; case 32: return 3.*dz*dz; case 33: case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nx * nz; for (unsigned int index=1; index < nx; index++) val *= dx; for (unsigned int index=0; index != ny; index++) val *= dy; for (unsigned int index=1; index < nz; index++) val *= dz; return val; } } // d^2()/dydz case 4: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: case 6: case 7: return 0.; case 8: return 1.; case 9: return 0.; // cubic case 10: case 11: case 12: case 13: case 14: return 0.; case 15: return dx; case 16: return 2.*dy; case 17: return 0.; case 18: return 2.*dz; case 19: return 0.; // quartics case 20: case 21: case 22: case 23: case 24: case 25: return 0.; case 26: return dx*dx; case 27: return 2.*dx*dy; case 28: return 3.*dy*dy; case 29: return 0.; case 30: return 2.*dx*dz; case 31: return 4.*dy*dz; case 32: return 0.; case 33: return 3.*dz*dz; case 34: return 0.; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = ny * nz; for (unsigned int index=0; index != nx; index++) val *= dx; for (unsigned int index=1; index < ny; index++) val *= dy; for (unsigned int index=1; index < nz; index++) val *= dz; return val; } } // d^2()/dz^2 case 5: { switch (i) { // constant case 0: // linear case 1: case 2: case 3: return 0.; // quadratic case 4: case 5: case 6: case 7: case 8: return 0.; case 9: return 2.; // cubic case 10: case 11: case 12: case 13: case 14: case 15: case 16: return 0.; case 17: return 2.*dx; case 18: return 2.*dy; case 19: return 6.*dz; // quartics case 20: case 21: case 22: case 23: case 24: case 25: case 26: case 27: case 28: return 0.; case 29: return 2.*dx*dx; case 30: return 2.*dx*dy; case 31: return 2.*dy*dy; case 32: return 6.*dx*dz; case 33: return 6.*dy*dz; case 34: return 12.*dz*dz; default: unsigned int o = 0; for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { } unsigned int i2 = i - (o*(o+1)*(o+2)/6); unsigned int block=o, nz = 0; for (; block < i2; block += (o-nz+1)) { nz++; } const unsigned int nx = block - i2; const unsigned int ny = o - nx - nz; Real val = nz * (nz - 1); for (unsigned int index=0; index != nx; index++) val *= dx; for (unsigned int index=0; index != ny; index++) val *= dy; for (unsigned int index=2; index < nz; index++) val *= dz; return val; } } default: libmesh_error(); }#endif libmesh_error(); return 0.; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -