⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fe_xyz_shape_3d.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
📖 第 1 页 / 共 2 页
字号:
// $Id: fe_xyz_shape_3D.C 2922 2008-07-08 21:48:10Z jwpeterson $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// C++ inlcludes// Local includes#include "fe.h"#include "elem.h"// Anonymous namespace for persistant variables.// This allows us to determine when the centroid needs// to be recalculated.namespace{  static unsigned int old_elem_id = libMesh::invalid_uint;  static Point centroid;}template <>Real FE<3,XYZ>::shape(const ElemType,		      const Order,		      const unsigned int,		      const Point&){  std::cerr << "XYZ polynomials require the element\n"            << "because the centroid is needed."            << std::endl;  libmesh_error();  return 0.;}template <>Real FE<3,XYZ>::shape(const Elem* elem,		      const Order order,		      const unsigned int i,		      const Point& p){#if DIM == 3    libmesh_assert (elem != NULL);    // Only recompute the centroid if the element  // has changed from the last one we computed.  // This avoids repeated centroid calculations  // when called in succession with the same element.  if (elem->id() != old_elem_id)    {      centroid = elem->centroid();      old_elem_id = elem->id();    }      const Real x  = p(0);  const Real y  = p(1);  const Real z  = p(2);  const Real xc = centroid(0);  const Real yc = centroid(1);  const Real zc = centroid(2);  const Real dx = x - xc;  const Real dy = y - yc;  const Real dz = z - zc;#ifndef NDEBUG  // totalorder is only used in the assertion below, so  // we avoid declaring it when asserts are not active.  const unsigned int totalorder = order + elem->p_level();#endif  libmesh_assert (i < (static_cast<unsigned int>(totalorder)+1)*              (static_cast<unsigned int>(totalorder)+2)*              (static_cast<unsigned int>(totalorder)+2)/6);      // monomials. since they are hierarchic we only need one case block.  switch (i)    {      // constant    case 0:      return 1.;      // linears    case 1:      return dx;          case 2:      return dy;          case 3:      return dz;      // quadratics    case 4:      return dx*dx;          case 5:      return dx*dy;          case 6:      return dy*dy;    case 7:      return dx*dz;    case 8:      return dz*dy;    case 9:      return dz*dz;      // cubics    case 10:      return dx*dx*dx;    case 11:      return dx*dx*dy;    case 12:      return dx*dy*dy;    case 13:      return dy*dy*dy;    case 14:      return dx*dx*dz;    case 15:      return dx*dy*dz;    case 16:      return dy*dy*dz;    case 17:      return dx*dz*dz;    case 18:      return dy*dz*dz;    case 19:      return dz*dz*dz;      // quartics    case 20:      return dx*dx*dx*dx;    case 21:      return dx*dx*dx*dy;    case 22:      return dx*dx*dy*dy;    case 23:      return dx*dy*dy*dy;    case 24:      return dy*dy*dy*dy;    case 25:      return dx*dx*dx*dz;    case 26:      return dx*dx*dy*dz;    case 27:      return dx*dy*dy*dz;    case 28:      return dy*dy*dy*dz;    case 29:      return dx*dx*dz*dz;    case 30:      return dx*dy*dz*dz;    case 31:      return dy*dy*dz*dz;    case 32:      return dx*dz*dz*dz;    case 33:      return dy*dz*dz*dz;    case 34:      return dz*dz*dz*dz;      	        default:      unsigned int o = 0;      for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }      unsigned int i2 = i - (o*(o+1)*(o+2)/6);      unsigned int block=o, nz = 0;      for (; block < i2; block += (o-nz+1)) { nz++; }      const unsigned int nx = block - i2;      const unsigned int ny = o - nx - nz;      Real val = 1.;      for (unsigned int index=0; index != nx; index++)        val *= dx;      for (unsigned int index=0; index != ny; index++)        val *= dy;      for (unsigned int index=0; index != nz; index++)        val *= dz;      return val;    }#endif    libmesh_error();  return 0.;}template <>Real FE<3,XYZ>::shape_deriv(const ElemType,			    const Order,			    const unsigned int,			    const unsigned int,			    const Point&){  std::cerr << "XYZ polynomials require the element\n"            << "because the centroid is needed."            << std::endl;    libmesh_error();  return 0.;}template <>Real FE<3,XYZ>::shape_deriv(const Elem* elem,			    const Order order,			    const unsigned int i,			    const unsigned int j,			    const Point& p){#if DIM == 3  libmesh_assert (elem != NULL);  libmesh_assert (j<3);    // Only recompute the centroid if the element  // has changed from the last one we computed.  // This avoids repeated centroid calculations  // when called in succession with the same element.  if (elem->id() != old_elem_id)    {      centroid = elem->centroid();      old_elem_id = elem->id();    }      const Real x  = p(0);  const Real y  = p(1);  const Real z  = p(2);  const Real xc = centroid(0);  const Real yc = centroid(1);  const Real zc = centroid(2);  const Real dx = x - xc;  const Real dy = y - yc;  const Real dz = z - zc;#ifndef NDEBUG  // totalorder is only used in the assertion below, so  // we avoid declaring it when asserts are not active.  const unsigned int totalorder = static_cast<Order>(order + elem->p_level());#endif  libmesh_assert (i < (static_cast<unsigned int>(totalorder)+1)*              (static_cast<unsigned int>(totalorder)+2)*              (static_cast<unsigned int>(totalorder)+2)/6);  switch (j)    {      // d()/dx    case 0:      {        switch (i)  	{  	  // constant  	case 0:  	  return 0.;  	    	  // linear  	case 1:  	  return 1.;  	    	case 2:  	  return 0.;  	    	case 3:  	  return 0.;  	  // quadratic  	case 4:  	  return 2.*dx;  	    	case 5:  	  return dy;  	    	case 6:  	  return 0.;  	    	case 7:  	  return dz;  	    	case 8:  	  return 0.;  	    	case 9:  	  return 0.;  	  // cubic  	case 10:  	  return 3.*dx*dx;  	case 11:  	  return 2.*dx*dy;  	case 12:  	  return dy*dy;  	case 13:  	  return 0.;  	case 14:  	  return 2.*dx*dz;  	case 15:  	  return dy*dz;  	case 16:  	  return 0.;  	case 17:  	  return dz*dz;  	case 18:  	  return 0.;  	case 19:  	  return 0.;  	  // quartics  	case 20:  	  return 4.*dx*dx*dx;  	case 21:  	  return 3.*dx*dx*dy;  	case 22:  	  return 2.*dx*dy*dy;  	case 23:  	  return dy*dy*dy;  	case 24:  	  return 0.;  	case 25:  	  return 3.*dx*dx*dz;  	case 26:  	  return 2.*dx*dy*dz;  	case 27:  	  return dy*dy*dz;  	case 28:  	  return 0.;  	case 29:  	  return 2.*dx*dz*dz;  	case 30:  	  return dy*dz*dz;  	case 31:  	  return 0.;  	case 32:  	  return dz*dz*dz;  	case 33:  	  return 0.;  	case 34:  	  return 0.;  	          default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = nx;          for (unsigned int index=1; index < nx; index++)            val *= dx;          for (unsigned int index=0; index != ny; index++)            val *= dy;          for (unsigned int index=0; index != nz; index++)            val *= dz;          return val;  	}      }            // d()/dy    case 1:      {        switch (i)  	{  	  // constant  	case 0:  	  return 0.;  	    	  // linear  	case 1:  	  return 0.;  	    	case 2:  	  return 1.;  	    	case 3:  	  return 0.;  	  // quadratic  	case 4:  	  return 0.;  	    	case 5:  	  return dx;  	    	case 6:  	  return 2.*dy;  	    	case 7:  	  return 0.;  	    	case 8:  	  return dz;  	    	case 9:  	  return 0.;  	  // cubic  	case 10:  	  return 0.;  	case 11:  	  return dx*dx;  	case 12:  	  return 2.*dx*dy;  	case 13:  	  return 3.*dy*dy;  	case 14:  	  return 0.;  	case 15:  	  return dx*dz;  	case 16:  	  return 2.*dy*dz;  	case 17:  	  return 0.;  	case 18:  	  return dz*dz;  	case 19:  	  return 0.;  	  // quartics  	case 20:  	  return 0.;  	case 21:  	  return dx*dx*dx;  	case 22:  	  return 2.*dx*dx*dy;  	case 23:  	  return 3.*dx*dy*dy;  	case 24:  	  return 4.*dy*dy*dy;  	case 25:  	  return 0.;  	case 26:  	  return dx*dx*dz;  	case 27:  	  return 2.*dx*dy*dz;  	case 28:  	  return 3.*dy*dy*dz;  	case 29:  	  return 0.;  	case 30:  	  return dx*dz*dz;  	case 31:  	  return 2.*dy*dz*dz;  	case 32:  	  return 0.;  	case 33:  	  return dz*dz*dz;  	case 34:  	  return 0.;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = ny;          for (unsigned int index=0; index != nx; index++)            val *= dx;          for (unsigned int index=1; index < ny; index++)            val *= dy;          for (unsigned int index=0; index != nz; index++)            val *= dz;          return val;  	}      }            // d()/dz    case 2:      {        switch (i)  	{  	  // constant  	case 0:  	  return 0.;  	    	  // linear  	case 1:  	  return 0.;  	    	case 2:  	  return 0.;  	    	case 3:  	  return 1.;  	  // quadratic  	case 4:  	  return 0.;  	    	case 5:  	  return 0.;  	    	case 6:  	  return 0.;  	    	case 7:  	  return dx;  	    	case 8:  	  return dy;  	    	case 9:  	  return 2.*dz;  	  // cubic  	case 10:  	  return 0.;  	case 11:  	  return 0.;  	case 12:  	  return 0.;  	case 13:  	  return 0.;  	case 14:  	  return dx*dx;  	case 15:  	  return dx*dy;  	case 16:  	  return dy*dy;  	case 17:  	  return 2.*dx*dz;  	case 18:  	  return 2.*dy*dz;  	case 19:  	  return 3.*dz*dz;  	  // quartics  	case 20:  	  return 0.;  	case 21:  	  return 0.;  	case 22:  	  return 0.;  	case 23:  	  return 0.;  	case 24:  	  return 0.;  	case 25:  	  return dx*dx*dx;  	case 26:  	  return dx*dx*dy;  	case 27:  	  return dx*dy*dy;  	case 28:  	  return dy*dy*dy;  	case 29:  	  return 2.*dx*dx*dz;  	case 30:  	  return 2.*dx*dy*dz;  	case 31:  	  return 2.*dy*dy*dz;  	case 32:  	  return 3.*dx*dz*dz;  	case 33:  	  return 3.*dy*dz*dz;  	case 34:  	  return 4.*dz*dz*dz;  	    	default:          unsigned int o = 0;          for (; i >= (o+1)*(o+2)*(o+3)/6; o++) { }          unsigned int i2 = i - (o*(o+1)*(o+2)/6);          unsigned int block=o, nz = 0;          for (; block < i2; block += (o-nz+1)) { nz++; }          const unsigned int nx = block - i2;          const unsigned int ny = o - nx - nz;          Real val = nz;          for (unsigned int index=0; index != nx; index++)            val *= dx;          for (unsigned int index=0; index != ny; index++)            val *= dy;          for (unsigned int index=1; index < nz; index++)            val *= dz;          return val;  	}      }      

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -