📄 fe_hierarchic_shape_1d.c
字号:
// $Id: fe_hierarchic_shape_1D.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// C++ inlcludes// Local includes#include "fe.h"#include "elem.h"#include "utility.h"template <>Real FE<1,HIERARCHIC>::shape(const ElemType, const Order order, const unsigned int i, const Point& p){ libmesh_assert(i < order+1u); // Declare that we are using our own special power function // from the Utility namespace. This saves typing later. using Utility::pow; const Real xi = p(0); Real returnval = 1.; switch (i) { case 0: returnval = .5*(1. - xi); break; case 1: returnval = .5*(1. + xi); break; // All even-terms have the same form. // (xi^p - 1.)/p! case 2: returnval = (xi*xi - 1.)/2.; break; case 4: returnval = (pow<4>(xi) - 1.)/24.; break; case 6: returnval = (pow<6>(xi) - 1.)/720.; break; // All odd-terms have the same form. // (xi^p - xi)/p! case 3: returnval = (xi*xi*xi - xi)/6.; break; case 5: returnval = (pow<5>(xi) - xi)/120.; break; case 7: returnval = (pow<7>(xi) - xi)/5040.; break; default: Real denominator = 1.; for (unsigned int n=1; n <= i; ++n) { returnval *= xi; denominator *= n; } // Odd: if (i % 2) returnval = (returnval - xi)/denominator; // Even: else returnval = (returnval - 1.)/denominator; break; } return returnval;}template <>Real FE<1,HIERARCHIC>::shape(const Elem* elem, const Order order, const unsigned int i, const Point& p){ libmesh_assert (elem != NULL); return FE<1,HIERARCHIC>::shape(elem->type(), static_cast<Order>(order + elem->p_level()), i, p);}template <>Real FE<1,HIERARCHIC>::shape_deriv(const ElemType, const Order order, const unsigned int i, const unsigned int j, const Point& p){ // only d()/dxi in 1D! libmesh_assert (j == 0); libmesh_assert(i < order+1u); // Declare that we are using our own special power function // from the Utility namespace. This saves typing later. using Utility::pow; const Real xi = p(0); Real returnval = 1.; switch (i) { case 0: returnval = -.5; break; case 1: returnval = .5; break; // All even-terms have the same form. // xi^(p-1)/(p-1)! case 2: returnval = xi; break; case 4: returnval = pow<3>(xi)/6.; break; case 6: returnval = pow<5>(xi)/120.; break; // All odd-terms have the same form. // (p*xi^(p-1) - 1.)/p! case 3: returnval = (3*xi*xi - 1.)/6.; break; case 5: returnval = (5.*pow<4>(xi) - 1.)/120.; break; case 7: returnval = (7.*pow<6>(xi) - 1.)/5040.; break; default: Real denominator = 1.; for (unsigned int n=1; n != i; ++n) { returnval *= xi; denominator *= n; } // Odd: if (i % 2) returnval = (i * returnval - 1.)/denominator/i; // Even: else returnval = returnval/denominator; break; } return returnval;}template <>Real FE<1,HIERARCHIC>::shape_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){ libmesh_assert (elem != NULL); return FE<1,HIERARCHIC>::shape_deriv(elem->type(), static_cast<Order>(order + elem->p_level()), i, j, p);}template <>Real FE<1,HIERARCHIC>::shape_second_deriv(const ElemType, const Order order, const unsigned int i, const unsigned int j, const Point& p){ // only d2()/d2xi in 1D! libmesh_assert (j == 0); libmesh_assert (i < order+1u); // Declare that we are using our own special power function // from the Utility namespace. This saves typing later. using Utility::pow; const Real xi = p(0); Real returnval = 1.; switch (i) { case 0: case 1: returnval = 0; break; // All terms have the same form. // xi^(p-2)/(p-2)! case 2: returnval = 1; break; case 3: returnval = xi; break; case 4: returnval = pow<2>(xi)/2.; break; case 5: returnval = pow<3>(xi)/6.; break; case 6: returnval = pow<4>(xi)/24.; break; case 7: returnval = pow<5>(xi)/120.; break; default: Real denominator = 1.; for (unsigned int n=1; n != i; ++n) { returnval *= xi; denominator *= n; } // Odd: if (i % 2) returnval = (i * returnval - 1.)/denominator/i; // Even: else returnval = returnval/denominator; break; } return returnval;}template <>Real FE<1,HIERARCHIC>::shape_second_deriv(const Elem* elem, const Order order, const unsigned int i, const unsigned int j, const Point& p){ libmesh_assert (elem != NULL); return FE<1,HIERARCHIC>::shape_second_deriv(elem->type(), static_cast<Order>(order + elem->p_level()), i, j, p);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -