⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 fe_hierarchic_shape_1d.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
// $Id: fe_hierarchic_shape_1D.C 2789 2008-04-13 02:24:40Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// C++ inlcludes// Local includes#include "fe.h"#include "elem.h"#include "utility.h"template <>Real FE<1,HIERARCHIC>::shape(const ElemType,			     const Order order,			     const unsigned int i,			     const Point& p){  libmesh_assert(i < order+1u);  // Declare that we are using our own special power function  // from the Utility namespace.  This saves typing later.  using Utility::pow;  const Real xi = p(0);  Real returnval = 1.;  switch (i)    {    case 0:      returnval = .5*(1. - xi);      break;    case 1:      returnval = .5*(1.  + xi);      break;      // All even-terms have the same form.      // (xi^p - 1.)/p!    case 2:      returnval = (xi*xi - 1.)/2.;      break;    case 4:      returnval = (pow<4>(xi) - 1.)/24.;      break;    case 6:      returnval = (pow<6>(xi) - 1.)/720.;      break;      // All odd-terms have the same form.      // (xi^p - xi)/p!    case 3:      returnval = (xi*xi*xi - xi)/6.;      break;    case 5:      returnval = (pow<5>(xi) - xi)/120.;      break;    case 7:      returnval = (pow<7>(xi) - xi)/5040.;	          break;    default:      Real denominator = 1.;      for (unsigned int n=1; n <= i; ++n)        {          returnval *= xi;          denominator *= n;        }      // Odd:      if (i % 2)        returnval = (returnval - xi)/denominator;      // Even:      else        returnval = (returnval - 1.)/denominator;      break;    }  return returnval;}template <>Real FE<1,HIERARCHIC>::shape(const Elem* elem,			     const Order order,			     const unsigned int i,			     const Point& p){  libmesh_assert (elem != NULL);    return FE<1,HIERARCHIC>::shape(elem->type(), static_cast<Order>(order + elem->p_level()), i, p);}template <>Real FE<1,HIERARCHIC>::shape_deriv(const ElemType,				   const Order order,				   const unsigned int i,				   const unsigned int j,				   const Point& p){  // only d()/dxi in 1D!    libmesh_assert (j == 0);  libmesh_assert(i < order+1u);  // Declare that we are using our own special power function  // from the Utility namespace.  This saves typing later.  using Utility::pow;  const Real xi = p(0);  Real returnval = 1.;  switch (i)    {    case 0:      returnval = -.5;      break;    case 1:      returnval =  .5;      break;      // All even-terms have the same form.      // xi^(p-1)/(p-1)!    case 2:      returnval = xi;      break;    case 4:      returnval = pow<3>(xi)/6.;      break;    case 6:      returnval = pow<5>(xi)/120.;      break;      // All odd-terms have the same form.      // (p*xi^(p-1) - 1.)/p!    case 3:      returnval = (3*xi*xi - 1.)/6.;      break;    case 5:      returnval = (5.*pow<4>(xi) - 1.)/120.;      break;    case 7:      returnval = (7.*pow<6>(xi) - 1.)/5040.;	          break;    default:      Real denominator = 1.;      for (unsigned int n=1; n != i; ++n)        {          returnval *= xi;          denominator *= n;        }      // Odd:      if (i % 2)        returnval = (i * returnval - 1.)/denominator/i;      // Even:      else        returnval = returnval/denominator;      break;    }  return returnval;}template <>Real FE<1,HIERARCHIC>::shape_deriv(const Elem* elem,				   const Order order,				   const unsigned int i,				   const unsigned int j,				   const Point& p){  libmesh_assert (elem != NULL);    return FE<1,HIERARCHIC>::shape_deriv(elem->type(),				       static_cast<Order>(order + elem->p_level()), i, j, p);}template <>Real FE<1,HIERARCHIC>::shape_second_deriv(const ElemType,				          const Order order,				          const unsigned int i,				          const unsigned int j,				          const Point& p){  // only d2()/d2xi in 1D!    libmesh_assert (j == 0);  libmesh_assert (i < order+1u);  // Declare that we are using our own special power function  // from the Utility namespace.  This saves typing later.  using Utility::pow;  const Real xi = p(0);	  Real returnval = 1.;  switch (i)    {    case 0:    case 1:      returnval = 0;      break;      // All terms have the same form.      // xi^(p-2)/(p-2)!    case 2:      returnval = 1;      break;    case 3:      returnval = xi;      break;    case 4:      returnval = pow<2>(xi)/2.;      break;    case 5:      returnval = pow<3>(xi)/6.;      break;    case 6:      returnval = pow<4>(xi)/24.;      break;    case 7:      returnval = pow<5>(xi)/120.;	          break;        default:      Real denominator = 1.;      for (unsigned int n=1; n != i; ++n)        {          returnval *= xi;          denominator *= n;        }      // Odd:      if (i % 2)        returnval = (i * returnval - 1.)/denominator/i;      // Even:      else        returnval = returnval/denominator;      break;    }  return returnval;}template <>Real FE<1,HIERARCHIC>::shape_second_deriv(const Elem* elem,				          const Order order,				          const unsigned int i,				          const unsigned int j,				          const Point& p){  libmesh_assert (elem != NULL);    return FE<1,HIERARCHIC>::shape_second_deriv(elem->type(),				              static_cast<Order>(order + elem->p_level()), i, j, p);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -