📄 quadrature_simpson_3d.c
字号:
// $Id: quadrature_simpson_3D.C 2788 2008-04-13 02:05:22Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA// Local includes#include "quadrature_simpson.h"void QSimpson::init_3D(const ElemType _type, unsigned int){#if DIM == 3 //----------------------------------------------------------------------- // 3D quadrature rules switch (_type) { //--------------------------------------------- // Hex quadrature rules case HEX8: case HEX20: case HEX27: { // We compute the 3D quadrature rule as a tensor // product of the 1D quadrature rule. QSimpson q1D(1); q1D.init(EDGE2); tensor_product_hex( q1D ); return; } //--------------------------------------------- // Tetrahedral quadrature rules case TET4: case TET10: { // This rule is created by combining 8 subtets // which use the trapezoidal rule. The weights // may seem a bit odd, but they are correct, // and should add up to 1/6, the volume of the // reference tet. The points of this rule are // at the nodal points of the TET10, allowing // you to generate diagonal element stiffness // matrices when using quadratic elements. // It should be able to integrate something // better than linears, but I'm not sure how // high. _points.resize(10); _weights.resize(10); _points[0](0) = 0.; _points[5](0) = .5; _points[0](1) = 0.; _points[5](1) = .5; _points[0](2) = 0.; _points[5](2) = 0.; _points[1](0) = 1.; _points[6](0) = 0.; _points[1](1) = 0.; _points[6](1) = .5; _points[1](2) = 0.; _points[6](2) = 0.; _points[2](0) = 0.; _points[7](0) = 0.; _points[2](1) = 1.; _points[7](1) = 0.; _points[2](2) = 0.; _points[7](2) = .5; _points[3](0) = 0.; _points[8](0) = .5; _points[3](1) = 0.; _points[8](1) = 0.; _points[3](2) = 1.; _points[8](2) = .5; _points[4](0) = .5; _points[9](0) = 0.; _points[4](1) = 0.; _points[9](1) = .5; _points[4](2) = 0.; _points[9](2) = .5; _weights[0] = .0052083333333333333333333333333333333333333333; // 1./192. _weights[1] = _weights[0]; _weights[2] = _weights[0]; _weights[3] = _weights[0]; _weights[4] = .0243055555555555555555555555555555555555555555; // 14./576. _weights[5] = _weights[4]; _weights[6] = _weights[4]; _weights[7] = _weights[4]; _weights[8] = _weights[4]; _weights[9] = _weights[4]; return; } //--------------------------------------------- // Prism quadrature rules case PRISM6: case PRISM15: case PRISM18: { // We compute the 3D quadrature rule as a tensor // product of the 1D quadrature rule and a 2D // triangle quadrature rule QSimpson q1D(1); QSimpson q2D(2); // Initialize q1D.init(EDGE2); q2D.init(TRI3); tensor_product_prism(q1D, q2D); return; } //--------------------------------------------- // Unsupported type default: { std::cerr << "ERROR: Unsupported type: " << _type << std::endl; libmesh_error(); } } libmesh_error(); return; #endif}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -