⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 quadrature_simpson_3d.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
// $Id: quadrature_simpson_3D.C 2788 2008-04-13 02:05:22Z roystgnr $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA// Local includes#include "quadrature_simpson.h"void QSimpson::init_3D(const ElemType _type,                       unsigned int){#if DIM == 3    //-----------------------------------------------------------------------  // 3D quadrature rules  switch (_type)    {      //---------------------------------------------      // Hex quadrature rules    case HEX8:    case HEX20:    case HEX27:      {	// We compute the 3D quadrature rule as a tensor	// product of the 1D quadrature rule.	QSimpson q1D(1);	q1D.init(EDGE2);	tensor_product_hex( q1D );		return;      }            //---------------------------------------------      // Tetrahedral quadrature rules    case TET4:    case TET10:      {	// This rule is created by combining 8 subtets	// which use the trapezoidal rule.  The weights	// may seem a bit odd, but they are correct,	// and should add up to 1/6, the volume of the	// reference tet.  The points of this rule are	// at the nodal points of the TET10, allowing	// you to generate diagonal element stiffness	// matrices when using quadratic elements.	// It should be able to integrate something	// better than linears, but I'm not sure how	// high.		_points.resize(10);	_weights.resize(10);		_points[0](0) = 0.;   _points[5](0) = .5;  	_points[0](1) = 0.;   _points[5](1) = .5;	_points[0](2) = 0.;   _points[5](2) = 0.;			      		   	_points[1](0) = 1.;   _points[6](0) = 0.;	_points[1](1) = 0.;   _points[6](1) = .5;	_points[1](2) = 0.;   _points[6](2) = 0.;			      		   	_points[2](0) = 0.;   _points[7](0) = 0.;	_points[2](1) = 1.;   _points[7](1) = 0.;	_points[2](2) = 0.;   _points[7](2) = .5;			      		   	_points[3](0) = 0.;   _points[8](0) = .5;	_points[3](1) = 0.;   _points[8](1) = 0.;	_points[3](2) = 1.;   _points[8](2) = .5;			      		   	_points[4](0) = .5;   _points[9](0) = 0.;	_points[4](1) = 0.;   _points[9](1) = .5;	_points[4](2) = 0.;   _points[9](2) = .5;			_weights[0] = .0052083333333333333333333333333333333333333333; // 1./192.	_weights[1] = _weights[0];	_weights[2] = _weights[0];	_weights[3] = _weights[0];	_weights[4] = .0243055555555555555555555555555555555555555555; // 14./576.	_weights[5] = _weights[4];	_weights[6] = _weights[4];	_weights[7] = _weights[4];	_weights[8] = _weights[4];	_weights[9] = _weights[4];		return;      }                        //---------------------------------------------      // Prism quadrature rules    case PRISM6:    case PRISM15:    case PRISM18:      {	// We compute the 3D quadrature rule as a tensor	// product of the 1D quadrature rule and a 2D	// triangle quadrature rule 	QSimpson q1D(1); 	QSimpson q2D(2); 	// Initialize  	q1D.init(EDGE2); 	q2D.init(TRI3);	tensor_product_prism(q1D, q2D);	return;      }            //---------------------------------------------      // Unsupported type    default:      {	std::cerr << "ERROR: Unsupported type: " << _type << std::endl;	libmesh_error();      }    }  libmesh_error();  return;  #endif}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -