📄 quadrature_monomial.c
字号:
// $Id: quadrature_monomial.C 2932 2008-07-14 22:29:43Z jwpeterson $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA#include "quadrature_monomial.h"// See the files:// quadrature_monomial_2D.C// quadrature_monomial_3D.C// for implementation of specific element types.// ConstructorQMonomial::QMonomial(const unsigned int d, const Order o) : QBase(d,o){}// DestructorQMonomial::~QMonomial(){}void QMonomial::wissmann_rule(const Real rule_data[][3], const unsigned int n_pts){ for (unsigned int i=0, c=0; i<n_pts; ++i) { _points[c] = Point( rule_data[i][0], rule_data[i][1] ); _weights[c++] = rule_data[i][2]; // This may be an (x1,x2) -> (-x1,x2) point, in which case // we will also generate the mirror point using the same weight. if (rule_data[i][0] != static_cast<Real>(0.0)) { _points[c] = Point( -rule_data[i][0], rule_data[i][1] ); _weights[c++] = rule_data[i][2]; } }}void QMonomial::stroud_rule(const Real rule_data[][3], const unsigned int* rule_symmetry, const unsigned int n_pts){ for (unsigned int i=0, c=0; i<n_pts; ++i) { const Real x=rule_data[i][0], y=rule_data[i][1], w=rule_data[i][2]; switch(rule_symmetry[i]) { case 0: // Single point (no symmetry) { _points[c] = Point( x, y); _weights[c++] = w; break; } case 1: // Fully-symmetric (x,y) { _points[c] = Point( x, y); _weights[c++] = w; _points[c] = Point(-x, y); _weights[c++] = w; _points[c] = Point( x,-y); _weights[c++] = w; _points[c] = Point(-x,-y); _weights[c++] = w; _points[c] = Point( y, x); _weights[c++] = w; _points[c] = Point(-y, x); _weights[c++] = w; _points[c] = Point( y,-x); _weights[c++] = w; _points[c] = Point(-y,-x); _weights[c++] = w; break; } case 2: // Fully-symmetric (x,x) { _points[c] = Point( x, x); _weights[c++] = w; _points[c] = Point(-x, x); _weights[c++] = w; _points[c] = Point( x,-x); _weights[c++] = w; _points[c] = Point(-x,-x); _weights[c++] = w; break; } case 3: // Fully-symmetric (x,0) { libmesh_assert(y==0.0); _points[c] = Point( x,0.); _weights[c++] = w; _points[c] = Point(-x,0.); _weights[c++] = w; _points[c] = Point(0., x); _weights[c++] = w; _points[c] = Point(0.,-x); _weights[c++] = w; break; } case 4: // Rotational invariant { _points[c] = Point( x, y); _weights[c++] = w; _points[c] = Point(-x,-y); _weights[c++] = w; _points[c] = Point(-y, x); _weights[c++] = w; _points[c] = Point( y,-x); _weights[c++] = w; break; } case 5: // Partial symmetry (Wissman's rules) { libmesh_assert (x != 0.0); _points[c] = Point( x, y); _weights[c++] = w; _points[c] = Point(-x, y); _weights[c++] = w; break; } case 6: // Rectangular symmetry { _points[c] = Point( x, y); _weights[c++] = w; _points[c] = Point(-x, y); _weights[c++] = w; _points[c] = Point(-x,-y); _weights[c++] = w; _points[c] = Point( x,-y); _weights[c++] = w; break; } case 7: // Central symmetry { libmesh_assert (x == 0.0); libmesh_assert (y != 0.0); _points[c] = Point(0., y); _weights[c++] = w; _points[c] = Point(0.,-y); _weights[c++] = w; break; } default: { std::cerr << "Unknown symmetry!" << std::endl; libmesh_error(); } } // end switch(rule_symmetry[i]) }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -