⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 laspack1.ps

📁 一个用来实现偏微分方程中网格的计算库
💻 PS
📖 第 1 页 / 共 5 页
字号:
160EA2481606A6C71500B3ACEC1FF8011FB512F8A22F317CB038>84
D<B500F090387FFF80A2D803FCC73807F8006C48EC01E0A2705AB3AE00004B5A7F137C4C
C7FC7F011E1406011F5C6D6C5B6D6C5BD901F013E0903900FC07C0DA3FFFC8FCEC07F831
327CB03A>I<14301478A314FCA2497E14BEA2EB031FA201077FEB060FA2496C7EA3496C
7EA2496C7EA3496C7EEB7FFF90B57E9038C0007CA248487FA20003143F90C77EA248EC0F
805A486CEB1FC0D8FFE0EBFFFCA226257EA42C>97 D<D901FE134090390FFF80C090383F
80E190387C0031D801F0131B4848130F48481307485A90C712035A003E1401A2127E1500
127C12FC1600A8007C15C0127EA2123EED01807E7E6DEB03006C6C13066C7E6C6C5BD800
7C133890383F80E090380FFFC0D901FEC7FC22277DA52A>99 D<B6FC15C0390FC003F000
07EB00FC153E81ED0F80ED07C0A2ED03E0A216F01501A216F8A916F0A3ED03E0A2ED07C0
A2ED0F80ED1F00153E5D000FEB03F0B65A92C7FC25257DA42D>I<B612FEA2390FC0007E
0007141E150E15061507A281A3140C92C7FCA3141C143CEBFFFCA2EBC03C141C140CA2ED
0180A21400ED0300A45DA25D151E000F14FEB6FCA221257DA428>I<B612FCA2380FC000
0007143C151C150C150EA21506A3140C1500A3141C143CEBFFFCA2EBC03C141C140CA491
C7FCA9487EB5FCA21F257DA426>I<02FF1320010FEBC06090393F80F0E090387C0038D8
01F0130D4848130748481303485A150148C7FC481400123E127E1660127C12FC1600A691
3801FFFEA2007C90380007F0007EEC03E0A2123E123F7E6C7EA26C7E6C7ED801F81307D8
007E130C90393F80786090390FFFF0200100EB800027277DA52E>I<3AFFFE07FFF0A23A
0FE0007F006C48133EAE90B512FEA29038C0003EAF486C137F3AFFFE07FFF0A224257DA4
2C>I<EAFFFEA2EA0FE0EA07C0B3ADEA0FE0EAFFFEA20F257DA416>I<B5FCA2EA0FE06C5A
B3A2150CA4151CA31538A2157815F8000F1307B6FCA21E257DA425>108
D<B46CEBFFF07FD807E0EB1F806DEB0F001506EA06F8137CA27F7F7F1480EB07C0130314
E0EB01F0EB00F8A2147C143EA2141FEC0F86A2EC07C6EC03E6A2EC01F6EC00FE157EA215
3E151E120F486C130ED8FFF01306A224257DA42C>110 D<EB01FE90380FFFC090383F03
F09038F8007C48487F48487F4848EB0F804848EB07C048C7EA03E0A2003EEC01F0A2007E
15F8A2007C140000FC15FCA9007C15F8007E1401A2003E15F0003F14036C15E06D130700
0F15C06C6CEB0F806C6CEB1F006C6C133E6C6C5B90383F03F090380FFFC0D901FEC7FC26
277DA52E>I<B512F814FF390FC00FC00007EB03F0EC00F881157C157EA5157C15FC5DEC
03F0EC0FC090B5C7FC5CEBC01FEC07806E7E81140181A481A3160C15FC1400486CEB7C18
D8FFFEEB3E38ED1FF0C8EA07C026267DA42B>114 D<EBFE023807FF86380F01CE381C00
7E48133E0078131E0070130E12F0A21406A27E91C7FC127C127EEA7FC0EA3FFE381FFFC0
6C13F000037FC67FEB0FFEEB00FF143F80EC0F80A200C01307A46C14005C6C130E6C131E
00FE5B38E7807838C3FFE038807F8019277DA521>I<007FB612E0A2397C00F803007014
00A20060156000E01570A2481530A4C71400B3A4497E90387FFFF0A224257EA42A>I<D8
FFFEEBFFF0A2D80FE0EB1F806C48EB0F001506B3A600035C7F12015D6C6C5B13786D13E0
90381F03C0D907FFC7FCEB01FC24267DA42C>I<D8FFFCEB07FFA2D80FE0EB01F80007EC
00F016E0000315C0A26C6CEB0180A26D1303000015007F017C1306A26D5BA2013F131C6D
1318A26D6C5AA2ECC07001071360A26D6C5AA2903801F180A214FB010090C7FCA2147EA3
143CA2141828257FA42C>I<D8FFFCEB07FFA2D80FF0EB01F86C4814F06C6C14C012016D
EB03806C6C1400017C5B017E13066D5B90381F801C15186D6C5A903807E07015606D6C5A
EB01F95DEB00FF6EC7FC143EAD147F903807FFF0A228257FA42C>121
D E end
%%EndProlog
%%BeginSetup
%%Feature: *Resolution 300dpi
TeXDict begin
%%PaperSize: Letter

%%EndSetup
%%Page: 1 1
1 0 bop 502 -22 a Fq(Dresden)27 b(University)h(of)f(Technology)502
119 y(Institute)95 b(f)n(or)f(Fluid)80 b(Mechanics)p
202 203 128 4 v 202 -152 V 87 87 4 128 v 441 87 V 160
201 a Fp(@)119 159 y(@)89 129 y(@)401 -40 y(@)360 -82
y(@)330 -112 y(@)89 -40 y(\000)130 -82 y(\000)160 -112
y(\000)330 201 y(\000)371 159 y(\000)401 129 y(\000)p
207 191 119 4 v 207 -140 V 99 83 4 107 v 429 83 V 165
189 a(@)124 147 y(@)100 124 y(@)390 -35 y(@)348 -77 y(@)325
-100 y(@)100 -35 y(\000)142 -77 y(\000)165 -100 y(\000)325
189 y(\000)366 147 y(\000)390 124 y(\000)p 100 -34 113
4 v 319 -34 V 100 -22 101 4 v 331 -22 V 211 71 4 107
v 317 71 V 199 83 V 329 83 V 213 73 107 4 v 201 84 130
4 v 206 189 2 107 v 218 189 V 229 189 V 241 189 V 253
189 V 265 189 V 277 189 V 289 189 V 300 189 V 312 189
V 324 189 V 111 94 2 119 v 123 106 2 130 v 135 118 2
142 v 147 130 2 154 v 159 142 2 166 v 170 154 2 178 v
182 165 2 189 v 194 177 2 201 v 336 177 V 348 165 2 189
v 359 154 2 178 v 371 142 2 166 v 383 130 2 154 v 395
118 2 142 v 407 106 2 130 v 418 94 2 119 v 213 66 107
2 v 213 60 V 213 54 V 213 48 V 213 42 V 213 36 V 213
30 V 213 24 V 213 19 V 213 13 V 213 7 V 213 1 V 213 -5
V 213 -11 V 213 -17 V 213 -23 V 213 -29 V 213 -35 V 106
-41 319 2 v 112 -46 308 2 v 118 -52 296 2 v 124 -58 284
2 v 130 -64 272 2 v 136 -70 260 2 v 142 -76 249 2 v 148
-82 237 2 v 154 -88 225 2 v 159 -94 213 2 v 165 -100
201 2 v 171 -105 189 2 v 177 -111 178 2 v 183 -117 166
2 v 189 -123 154 2 v 195 -129 142 2 v 201 -135 130 2
v 502 202 1300 2 v 502 -153 V 519 921 a Fo(LASPack)19
b Fn(Reference)j(Man)n(ual)1319 895 y Fm(1)r(2)781 1035
y(\(v)o(ersion)15 b(1.12.3)q(\))723 1408 y Fn(T)-6 b(om\023)-33
b(a)l(\024)k(s)21 b(Sk)l(alic)n(k)q(\023)-34 b(y)763
2097 y Fm(Jan)o(uary)17 b(17,)f(1996)p 0 2368 756 2 v
56 2398 a Fl(1)75 2414 y Fk(The)11 b(dev)o(elopmen)o(t)f(of)g
Fj(LASPack)f Fk(w)o(as)i(supp)q(orted)h(in)e(part)h(b)o(y)g(the)g
(German)f(Bundesministerium)f(f)q(\177)-22 b(ur)11 b(F)m(orsc)o(h)o
(ung)0 2463 y(und)j(T)m(ec)o(hnologie)f(under)i(con)o(tract)f(n)o(um)o
(b)q(er)g(0329016D.)56 2498 y Fl(2)75 2513 y Fk(A)24
b(HTML)g(v)o(ersion)g(of)f(the)h(man)o(ual)e(is)i(a)o(v)n(ailable)d(at)
j Fj(http://www.tu-dres)o(den.)o(de/mw)o(ism/s)o(kalic)o(ky-)0
2563 y(/laspack/laspack.)o(html)p Fk(.)p eop
%%Page: 2 2
2 1 bop 0 2019 a Fm(Author's)16 b(address:)0 2129 y(T)l(om\023)-24
b(a)m(\024)i(s)17 b(Sk)m(alic)o(k)q(\023)-25 b(y)0 2189
y(Dresden)16 b(Univ)o(ersit)o(y)e(of)i(T)l(ec)o(hnology)0
2250 y(Institute)f(for)i(Fluid)e(Mec)o(hanics)0 2310
y(Mommsenstra\031e)f(13)0 2370 y(D-01062)19 b(Dresden)0
2430 y(German)o(y)0 2490 y(e-mail:)g(sk)m(alic)o(ky@msm)o(fs1.m)n(w.)o
(tu-dresden.de)0 2551 y(h)o(ttp://www.tu-dresden.de/m)o(wism/sk)m(alic)
o(k)o(y/home)o(.h)o(tm)n(l)931 2681 y(ii)p eop
%%Page: 1 3
1 2 bop 0 12 a Fi(Con)n(ten)n(ts)0 122 y Fh(1)45 b(In)n(tro)r(duction)
1480 b(1)0 231 y(2)45 b(What's)19 b(New)1484 b(2)73 291
y Fm(2.1)50 b(Changes)18 b(in)e(V)l(ersion)f(1.12)46
b Fg(:)25 b(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f
(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)70 b Fm(2)73
351 y(2.2)50 b(Changes)18 b(in)e(V)l(ersion)f(1.11)46
b Fg(:)25 b(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f
(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)70 b Fm(2)73
411 y(2.3)50 b(Changes)18 b(in)e(V)l(ersion)f(1.10)46
b Fg(:)25 b(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f
(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)70 b Fm(3)0
520 y Fh(3)45 b(Do)n(wnloading)1472 b(3)0 629 y(4)45
b(Installation)1510 b(4)0 738 y(5)45 b(Optimizing)16
b(and)k(Example)c(Programs)921 b(6)73 799 y Fm(5.1)50
b(Program)17 b Ff(lastest)j Fg(:)25 b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f
(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)
h(:)f(:)g(:)h(:)f(:)70 b Fm(6)73 859 y(5.2)50 b(Program)17
b Ff(vectopt)j Fg(:)25 b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)
f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h
(:)f(:)70 b Fm(7)73 919 y(5.3)50 b(Program)17 b Ff(matropt)j
Fg(:)25 b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h
(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)70
b Fm(7)73 979 y(5.4)50 b(Program)17 b Ff(mlstest)j Fg(:)25
b(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g
(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)h(:)f(:)g(:)h(:)f(:)70
b Fm(8)0 1088 y Fh(6)45 b(Cop)n(yrigh)n(t)1544 b(8)0
1197 y(7)45 b(Ac)n(kno)n(wledgemen)n(t)1345 b(9)0 1306
y(8)45 b(Man)n(ual)20 b(P)n(ages,)f(Index)1245 b(11)p
16 1462 1858 2 v 0 1724 a Fi(1)83 b(In)n(tro)r(duction)0
1834 y Ff(LASPack)13 b Fm(is)i(a)h(pac)o(k)m(age)f(for)h(solving)f
(large)g(sparse)h(systems)f(of)g(linear)g(equations)g(lik)o(e)f(those)h
(whic)o(h)0 1894 y(arise)h(from)f(the)h(discretization)f(of)i(partial)f
(di\013eren)o(tial)f(equations.)73 2002 y(Main)h(features:)73
2101 y Fe(\017)24 b Fm(The)c(primary)f(aim)g(of)i Ff(LASPack)d
Fm(is)i(the)g(implem)o(en)o(tation)e(of)i(e\016cien)o(t)f(iterativ)o(e)
f(metho)q(ds)122 2161 y(for)e(the)f(solution)h(of)g(systems)f(of)h
(linear)f(equations.)21 b(All)14 b(routines)i(and)h(data)f(structures)g
(are)122 2221 y(optimized)d(for)j(e\013ectiv)o(e)e(usage)i(of)g
(resources)g(esp)q(ecially)e(with)h(regard)i(to)f(large)f(sparse)h(ma-)
122 2282 y(trices.)21 b(The)16 b(pac)o(k)m(age)h(can)f(b)q(e)h
(accessed)f(from)f(an)i(application)f(through)h(a)g(straigh)o(tforw)o
(ard)122 2342 y(in)o(terface)e(de\014ned)h(in)g(the)g(form)f(of)h(pro)q
(cedure)h(calls.)73 2443 y Fe(\017)24 b Fm(Besides)13
b(the)g(obligatory)i(Jacobi,)f(successiv)o(e)e(o)o(v)o(er-relaxation,)h
(Cheb)o(yshev,)g(and)h(conjugate)122 2503 y(gradien)o(t)22
b(solv)o(ers,)i Ff(LASPack)c Fm(con)o(tains)j(selected)e
(state-of-the-art)j(algorithms)e(whic)o(h)g(are)122 2563
y(commonly)13 b(used)k(for)f(large)g(sparse)h(systems:)933
2681 y(1)p eop
%%Page: 2 4
2 3 bop 177 -119 a Fh({)24 b Fm(CG-lik)o(e)c(metho)q(ds)h(for)h
(non-symmetric)c(systems:)30 b(CGN,)21 b(GMRES,)g(BiCG,)g(QMR,)229
-59 y(CGS,)c(and)f(BiCGStab,)177 23 y Fh({)24 b Fm(m)o(ultilev)n(el)11
b(metho)q(ds)k(suc)o(h)f(as)i(the)f(m)o(ultigrid)d(and)j(conjugate)h
(gradien)o(t)e(metho)q(ds)h(pre-)229 83 y(conditioned)h(b)o(y)g(m)o
(ultigrid)e(and)i(BPX)g(preconditioners.)122 186 y(All)9
b(the)i(ab)q(o)o(v)o(e)g(solv)o(ers)f(are)h(applicable)f(not)h(only)g
(to)g(the)g(p)q(ositiv)o(e)f(de\014nite)g(or)h(non-symmetric)122
246 y(matrices,)j(but)i(are)g(also)h(adopted)f(for)h(singular)f
(systems)f(\(e.g.)g(arising)h(from)f(discretization)122
306 y(of)h(Neumann)f(b)q(oundary)j(v)m(alue)e(problems\).)73
409 y Fe(\017)24 b Fm(The)c(impleme)o(n)o(tation)e(is)i(based)h(on)g
(an)g(ob)s(ject-orien)o(ted)e(approac)o(h)i(\(although)h(it)e(is)g
(pro-)122 470 y(grammed)15 b(in)i(C\).)g(V)l(ectors)g(and)h(matrices)e
(are)h(de\014ned)g(as)h(new)g(data)g(t)o(yp)q(es)f(in)g(connection)122
530 y(with)e(the)h(corresp)q(onding)g(supp)q(orting)h(routines.)k(The)
16 b(basic)f(op)q(erations)i(are)e(impleme)o(n)o(ted)122
590 y(in)k(suc)o(h)h(a)g(w)o(a)o(y)g(that)g(they)g(allo)o(w)f(the)h
(programming)e(of)i(linear)f(algebra)i(algorithms)e(in)g(a)122
650 y(natural)e(w)o(a)o(y)l(.)73 753 y Fe(\017)24 b Ff(LASPack)14
b Fm(is)i(extensible)f(in)h(a)g(simple)e(manner.)21 b(An)16
b(access)g(to)h(the)f(in)o(ternal)f(represen)o(tation)122
813 y(of)k(v)o(ectors)f(and)h(matrices)d(is)i(not)h(necessary)g(and)g
(is)f(a)o(v)o(oided,)g(as)h(required)e(of)i(the)f(ob)s(ject-)122
874 y(orien)o(ted)13 b(programming.)19 b(This)c(allo)o(ws)f(an)h(impro)
o(v)o(em)o(e)o(n)o(t)c(of)k(algorithms)e(or)i(a)g(mo)q(di\014cation)122
934 y(of)h(data)i(structures)e(with)g(no)h(adjustmen)o(t)e(of)h
(application)g(programs)g(using)h(the)f(pac)o(k)m(age.)73
1037 y Fe(\017)24 b Ff(LASPack)14 b Fm(is)i(written)f(in)h(ANSI)f(C)i
(and)g(is)f(th)o(us)g(largely)g(p)q(ortable.)0 1205 y
Fi(2)83 b(What's)27 b(New)0 1329 y Fd(2.1)70 b(Changes)23
b(in)f(V)-6 b(ersion)23 b(1.12)73 1422 y Fe(\017)h Fm(Fixed)15
b(some)g(bugs.)73 1525 y Fe(\017)24 b Fm(Thoroughly)e(tested)e(all)g
(solv)o(ers)g(in)h(mo)q(dule)e Fh(ITERSOL)-6 b(V)20 b
Fm(for)h(symmetric)c(systems)i(\(b)o(y)122 1585 y(Marc)d(Niemann\).)73
1689 y Fe(\017)24 b Fm(Generated)16 b(the)g(HTML)g(v)o(er

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -