⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 mmatch.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
字号:
/* * Copyright 1997, Regents of the University of Minnesota * * mmatch.c * * This file contains the code that computes matchings and creates the next * level coarse graph. * * Started 7/23/97 * George * * $Id: mmatch.c 2501 2007-11-20 02:33:29Z benkirk $ * */#include <metis.h>/************************************************************************** This function finds a matching using the HEM heuristic**************************************************************************/void MCMatch_RM(CtrlType *ctrl, GraphType *graph){  int i, ii, j, k, nvtxs, ncon, cnvtxs, maxidx;  idxtype *xadj, *adjncy, *adjwgt;  idxtype *match, *cmap, *perm;  float *nvwgt;  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  nvwgt = graph->nvwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  cmap = graph->cmap;  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));  perm = idxwspacemalloc(ctrl, nvtxs);  RandomPermute(nvtxs, perm, 1);  cnvtxs = 0;  for (ii=0; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      maxidx = i;      /* Find a random matching, subject to maxvwgt constraints */      for (j=xadj[i]; j<xadj[i+1]; j++) {        k = adjncy[j];        if (match[k] == UNMATCHED && AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) {          maxidx = k;          break;        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));  CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function finds a matching using the HEM heuristic**************************************************************************/void MCMatch_HEM(CtrlType *ctrl, GraphType *graph){  int i, ii, j, k, l, nvtxs, cnvtxs, ncon, maxidx, maxwgt;  idxtype *xadj, *adjncy, *adjwgt;  idxtype *match, *cmap, *perm;  float *nvwgt;  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  nvwgt = graph->nvwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  cmap = graph->cmap;  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));  perm = idxwspacemalloc(ctrl, nvtxs);  RandomPermute(nvtxs, perm, 1);  cnvtxs = 0;  for (ii=0; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      maxidx = i;      maxwgt = 0;      /* Find a heavy-edge matching, subject to maxvwgt constraints */      for (j=xadj[i]; j<xadj[i+1]; j++) {        k = adjncy[j];        if (match[k] == UNMATCHED && maxwgt <= adjwgt[j] &&               AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) {          maxwgt = adjwgt[j];          maxidx = adjncy[j];        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));  CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function finds a matching using the HEM heuristic**************************************************************************/void MCMatch_SHEM(CtrlType *ctrl, GraphType *graph){  int i, ii, j, k, nvtxs, cnvtxs, ncon, maxidx, maxwgt, avgdegree;  idxtype *xadj, *adjncy, *adjwgt;  idxtype *match, *cmap, *degrees, *perm, *tperm;  float *nvwgt;  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  nvwgt = graph->nvwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  cmap = graph->cmap;  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));  perm = idxwspacemalloc(ctrl, nvtxs);  tperm = idxwspacemalloc(ctrl, nvtxs);  degrees = idxwspacemalloc(ctrl, nvtxs);  RandomPermute(nvtxs, tperm, 1);  avgdegree = 0.7*(xadj[nvtxs]/nvtxs);  for (i=0; i<nvtxs; i++)     degrees[i] = (xadj[i+1]-xadj[i] > avgdegree ? avgdegree : xadj[i+1]-xadj[i]);  BucketSortKeysInc(nvtxs, avgdegree, degrees, tperm, perm);  cnvtxs = 0;  /* Take care any islands. Islands are matched with non-islands due to coarsening */  for (ii=0; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      if (xadj[i] < xadj[i+1])        break;      maxidx = i;      for (j=nvtxs-1; j>ii; j--) {        k = perm[j];        if (match[k] == UNMATCHED && xadj[k] < xadj[k+1]) {          maxidx = k;          break;        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  /* Continue with normal matching */  for (; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      maxidx = i;      maxwgt = 0;      /* Find a heavy-edge matching, subject to maxvwgt constraints */      for (j=xadj[i]; j<xadj[i+1]; j++) {        k = adjncy[j];        if (match[k] == UNMATCHED && maxwgt <= adjwgt[j] &&               AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) {          maxwgt = adjwgt[j];          maxidx = adjncy[j];        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));  idxwspacefree(ctrl, nvtxs);  /* degrees */  idxwspacefree(ctrl, nvtxs);  /* tperm */  CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function finds a matching using the HEM heuristic**************************************************************************/void MCMatch_SHEBM(CtrlType *ctrl, GraphType *graph, int norm){  int i, ii, j, k, nvtxs, cnvtxs, ncon, maxidx, maxwgt, avgdegree;  idxtype *xadj, *adjncy, *adjwgt;  idxtype *match, *cmap, *degrees, *perm, *tperm;  float *nvwgt;  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  nvwgt = graph->nvwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  cmap = graph->cmap;  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));  perm = idxwspacemalloc(ctrl, nvtxs);  tperm = idxwspacemalloc(ctrl, nvtxs);  degrees = idxwspacemalloc(ctrl, nvtxs);  RandomPermute(nvtxs, tperm, 1);  avgdegree = 0.7*(xadj[nvtxs]/nvtxs);  for (i=0; i<nvtxs; i++)     degrees[i] = (xadj[i+1]-xadj[i] > avgdegree ? avgdegree : xadj[i+1]-xadj[i]);  BucketSortKeysInc(nvtxs, avgdegree, degrees, tperm, perm);  cnvtxs = 0;  /* Take care any islands. Islands are matched with non-islands due to coarsening */  for (ii=0; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      if (xadj[i] < xadj[i+1])        break;      maxidx = i;      for (j=nvtxs-1; j>ii; j--) {        k = perm[j];        if (match[k] == UNMATCHED && xadj[k] < xadj[k+1]) {          maxidx = k;          break;        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  /* Continue with normal matching */  for (; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      maxidx = i;      maxwgt = -1;      /* Find a heavy-edge matching, subject to maxvwgt constraints */      for (j=xadj[i]; j<xadj[i+1]; j++) {        k = adjncy[j];        if (match[k] == UNMATCHED &&             AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt) &&            (maxwgt < adjwgt[j] ||               (maxwgt == adjwgt[j] &&                BetterVBalance(ncon, norm, nvwgt+i*ncon, nvwgt+maxidx*ncon, nvwgt+k*ncon) >= 0              )            )           ) {          maxwgt = adjwgt[j];          maxidx = k;        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));  idxwspacefree(ctrl, nvtxs);  /* degrees */  idxwspacefree(ctrl, nvtxs);  /* tperm */  CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function finds a matching using the HEM heuristic**************************************************************************/void MCMatch_SBHEM(CtrlType *ctrl, GraphType *graph, int norm){  int i, ii, j, k, nvtxs, cnvtxs, ncon, maxidx, maxwgt, avgdegree;  idxtype *xadj, *adjncy, *adjwgt;  idxtype *match, *cmap, *degrees, *perm, *tperm;  float *nvwgt, vbal;  IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  nvwgt = graph->nvwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  cmap = graph->cmap;  match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));  perm = idxwspacemalloc(ctrl, nvtxs);  tperm = idxwspacemalloc(ctrl, nvtxs);  degrees = idxwspacemalloc(ctrl, nvtxs);  RandomPermute(nvtxs, tperm, 1);  avgdegree = 0.7*(xadj[nvtxs]/nvtxs);  for (i=0; i<nvtxs; i++)     degrees[i] = (xadj[i+1]-xadj[i] > avgdegree ? avgdegree : xadj[i+1]-xadj[i]);  BucketSortKeysInc(nvtxs, avgdegree, degrees, tperm, perm);  cnvtxs = 0;  /* Take care any islands. Islands are matched with non-islands due to coarsening */  for (ii=0; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      if (xadj[i] < xadj[i+1])        break;      maxidx = i;      for (j=nvtxs-1; j>ii; j--) {        k = perm[j];        if (match[k] == UNMATCHED && xadj[k] < xadj[k+1]) {          maxidx = k;          break;        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  /* Continue with normal matching */  for (; ii<nvtxs; ii++) {    i = perm[ii];    if (match[i] == UNMATCHED) {  /* Unmatched */      maxidx = i;      maxwgt = -1;      vbal = 0.0;      /* Find a heavy-edge matching, subject to maxvwgt constraints */      for (j=xadj[i]; j<xadj[i+1]; j++) {        k = adjncy[j];        if (match[k] == UNMATCHED && AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) {          if (maxidx != i)            vbal = BetterVBalance(ncon, norm, nvwgt+i*ncon, nvwgt+maxidx*ncon, nvwgt+k*ncon);          if (vbal > 0 || (vbal > -.01 && maxwgt < adjwgt[j])) {            maxwgt = adjwgt[j];            maxidx = k;          }        }      }      cmap[i] = cmap[maxidx] = cnvtxs++;      match[i] = maxidx;      match[maxidx] = i;    }  }  IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));  idxwspacefree(ctrl, nvtxs);  /* degrees */  idxwspacefree(ctrl, nvtxs);  /* tperm */  CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);  idxwspacefree(ctrl, nvtxs);  idxwspacefree(ctrl, nvtxs);}/************************************************************************** This function checks if v+u2 provides a better balance in the weight * vector that v+u1**************************************************************************/float BetterVBalance(int ncon, int norm, float *vwgt, float *u1wgt, float *u2wgt){  int i;  float sum1, sum2, max1, max2, min1, min2, diff1, diff2;  if (norm == -1) {    max1 = min1 = vwgt[0]+u1wgt[0];    max2 = min2 = vwgt[0]+u2wgt[0];    sum1 = vwgt[0]+u1wgt[0];    sum2 = vwgt[0]+u2wgt[0];    for (i=1; i<ncon; i++) {      if (max1 < vwgt[i]+u1wgt[i])        max1 = vwgt[i]+u1wgt[i];      if (min1 > vwgt[i]+u1wgt[i])        min1 = vwgt[i]+u1wgt[i];      if (max2 < vwgt[i]+u2wgt[i])        max2 = vwgt[i]+u2wgt[i];      if (min2 > vwgt[i]+u2wgt[i])        min2 = vwgt[i]+u2wgt[i];      sum1 += vwgt[i]+u1wgt[i];      sum2 += vwgt[i]+u2wgt[i];    }    return ((max1-min1)/sum1) - ((max2-min2)/sum2);  }  else if (norm == 1) {    sum1 = sum2 = 0.0;    for (i=0; i<ncon; i++) {      sum1 += vwgt[i]+u1wgt[i];      sum2 += vwgt[i]+u2wgt[i];    }    sum1 = sum1/(1.0*ncon);    sum2 = sum2/(1.0*ncon);    diff1 = diff2 = 0.0;    for (i=0; i<ncon; i++) {      diff1 += fabs(sum1 - (vwgt[i]+u1wgt[i]));      diff2 += fabs(sum2 - (vwgt[i]+u2wgt[i]));    }    return diff1 - diff2;  }  else {    errexit("Unknown norm: %d\n", norm);  }  return 0.0;}/************************************************************************** This function checks if the vertex weights of two vertices are below * a given set of values**************************************************************************/int AreAllVwgtsBelowFast(int ncon, float *vwgt1, float *vwgt2, float limit){  int i;  for (i=0; i<ncon; i++)    if (vwgt1[i] + vwgt2[i] > limit)      return 0;  return 1;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -