⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 serial.c

📁 一个用来实现偏微分方程中网格的计算库
💻 C
📖 第 1 页 / 共 3 页
字号:
  /* Initialize the queues */  for (i=0; i<ncon; i++) {    FPQueueInit(&parts[i][0], nvtxs);    FPQueueInit(&parts[i][1], nvtxs);    qsizes[i][0] = qsizes[i][1] = 0;  }  for (i=0; i<nvtxs; i++) {    qnum[i] = samax(ncon, nvwgt+i*ncon);    qsizes[qnum[i]][where[i]]++;  }  for (from=0; from<2; from++) {    for (j=0; j<ncon; j++) {      if (qsizes[j][from] == 0) {        for (i=0; i<nvtxs; i++) {          if (where[i] != from)            continue;          k = samax2(ncon, nvwgt+i*ncon);          if (k == j &&               qsizes[qnum[i]][from] > qsizes[j][from] &&               nvwgt[i*ncon+qnum[i]] < 1.3*nvwgt[i*ncon+j]) {            qsizes[qnum[i]][from]--;            qsizes[j][from]++;            qnum[i] = j;          }        }      }    }  }  for (i=0; i<ncon; i++)    mindiff[i] = fabs(tpwgts[i]-npwgts[i]);  minbal = origbal = Serial_Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);  newcut = mincut = graph->mincut;  mincutorder = -1;  idxset(nvtxs, -1, moved);  /* Insert all nodes in the priority queues */  nbnd = graph->gnvtxs;  for (i=0; i<nvtxs; i++) {    cand[i].key = id[i]-ed[i];    cand[i].val = i;  }  ikeysort(nvtxs, cand);  for (ii=0; ii<nvtxs; ii++) {    i = cand[ii].val;    FPQueueInsert(&parts[qnum[i]][where[i]], i, (float)(ed[i]-id[i]));  }  for (nswaps=0; nswaps<nvtxs; nswaps++) {    if (minbal < lbfactor)      break;    Serial_SelectQueue(ncon, npwgts, tpwgts, &from, &cnum, parts);    to = (from+1)%2;    if (from == -1 || (higain = FPQueueGetMax(&parts[cnum][from])) == -1)      break;    saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);    saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);    newcut -= (ed[higain]-id[higain]);    newbal = Serial_Compute2WayHLoadImbalance(ncon, npwgts, tpwgts);    if (newbal < minbal || (newbal == minbal &&        (newcut < mincut || (newcut == mincut &&          Serial_BetterBalance(ncon, npwgts, tpwgts, mindiff))))) {      mincut = newcut;      minbal = newbal;      mincutorder = nswaps;      for (i=0; i<ncon; i++)        mindiff[i] = fabs(tpwgts[i]-npwgts[i]);    }    else if (nswaps-mincutorder > limit) { /* We hit the limit, undo last move */      newcut += (ed[higain]-id[higain]);      saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);      saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);      break;    }    where[higain] = to;    moved[higain] = nswaps;    swaps[nswaps] = higain;    /**************************************************************    * Update the id[i]/ed[i] values of the affected nodes    ***************************************************************/    SWAP(id[higain], ed[higain], tmp);    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])      BNDDelete(nbnd, bndind,  bndptr, higain);    if (ed[higain] > 0 && bndptr[higain] == -1)      BNDInsert(nbnd, bndind,  bndptr, higain);    for (j=xadj[higain]; j<xadj[higain+1]; j++) {      k = adjncy[j];      oldgain = ed[k]-id[k];      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);      INC_DEC(id[k], ed[k], kwgt);      /* Update the queue position */      if (moved[k] == -1)        FPQueueUpdate(&parts[qnum[k]][where[k]], k, (float)(oldgain), (float)(ed[k]-id[k]));      /* Update its boundary information */      if (ed[k] == 0 && bndptr[k] != -1)        BNDDelete(nbnd, bndind, bndptr, k);      else if (ed[k] > 0 && bndptr[k] == -1)        BNDInsert(nbnd, bndind, bndptr, k);    }  }  /****************************************************************  * Roll back computations  *****************************************************************/  for (nswaps--; nswaps>mincutorder; nswaps--) {    higain = swaps[nswaps];    to = where[higain] = (where[higain]+1)%2;    SWAP(id[higain], ed[higain], tmp);    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])      BNDDelete(nbnd, bndind,  bndptr, higain);    else if (ed[higain] > 0 && bndptr[higain] == -1)      BNDInsert(nbnd, bndind,  bndptr, higain);    saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);    saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+((to+1)%2)*ncon, 1);    for (j=xadj[higain]; j<xadj[higain+1]; j++) {      k = adjncy[j];      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);      INC_DEC(id[k], ed[k], kwgt);      if (bndptr[k] != -1 && ed[k] == 0)        BNDDelete(nbnd, bndind, bndptr, k);      if (bndptr[k] == -1 && ed[k] > 0)        BNDInsert(nbnd, bndind, bndptr, k);    }  }  graph->mincut = mincut;  graph->gnvtxs = nbnd;  for (i=0; i<ncon; i++) {    FPQueueFree(&parts[i][0]);    FPQueueFree(&parts[i][1]);  }  GKfree((void **)&cand, (void **)&qnum, (void **)&moved, (void **)&swaps, LTERM);  return;}/************************************************************************** This function balances two partitions by moving the highest gain* (including negative gain) vertices to the other domain.* It is used only when tha unbalance is due to non contigous* subdomains. That is, the are no boundary vertices.* It moves vertices from the domain that is overweight to the one that* is underweight.**************************************************************************/void Moc_Serial_Init2WayBalance(GraphType *graph, float *tpwgts){  int i, ii, j, k;  int kwgt, nvtxs, nbnd, ncon, nswaps, from, to, cnum, tmp;  idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;  idxtype *qnum;  float *nvwgt, *npwgts;  FPQueueType parts[MAXNCON][2];  int higain, oldgain, mincut;  KeyValueType *cand;  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  adjncy = graph->adjncy;  nvwgt = graph->nvwgt;  adjwgt = graph->adjwgt;  where = graph->where;  id = graph->sendind;  ed = graph->recvind;  npwgts = graph->gnpwgts;  bndptr = graph->sendptr;  bndind = graph->recvptr;  qnum = idxmalloc(nvtxs, "qnum");  cand = (KeyValueType *)GKmalloc(nvtxs*sizeof(KeyValueType), "cand");  /* This is called for initial partitioning so we know from where to pick nodes */  from = 1;  to = (from+1)%2;  for (i=0; i<ncon; i++) {    FPQueueInit(&parts[i][0], nvtxs);    FPQueueInit(&parts[i][1], nvtxs);  }  /* Compute the queues in which each vertex will be assigned to */  for (i=0; i<nvtxs; i++)    qnum[i] = samax(ncon, nvwgt+i*ncon);  for (i=0; i<nvtxs; i++) {    cand[i].key = id[i]-ed[i];    cand[i].val = i;  }  ikeysort(nvtxs, cand);  /* Insert the nodes of the proper partition in the appropriate priority queue */  for (ii=0; ii<nvtxs; ii++) {    i = cand[ii].val;    if (where[i] == from) {      if (ed[i] > 0)        FPQueueInsert(&parts[qnum[i]][0], i, (float)(ed[i]-id[i]));      else        FPQueueInsert(&parts[qnum[i]][1], i, (float)(ed[i]-id[i]));    }  }  mincut = graph->mincut;  nbnd = graph->gnvtxs;  for (nswaps=0; nswaps<nvtxs; nswaps++) {    if (Serial_AreAnyVwgtsBelow(ncon, 1.0, npwgts+from*ncon, 0.0, nvwgt, tpwgts+from*ncon))      break;    if ((cnum = Serial_SelectQueueOneWay(ncon, npwgts, tpwgts, from, parts)) == -1)      break;    if ((higain = FPQueueGetMax(&parts[cnum][0])) == -1)      higain = FPQueueGetMax(&parts[cnum][1]);    mincut -= (ed[higain]-id[higain]);    saxpy2(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);    saxpy2(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);    where[higain] = to;    /**************************************************************    * Update the id[i]/ed[i] values of the affected nodes    ***************************************************************/    SWAP(id[higain], ed[higain], tmp);    if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1])      BNDDelete(nbnd, bndind,  bndptr, higain);    if (ed[higain] > 0 && bndptr[higain] == -1)      BNDInsert(nbnd, bndind,  bndptr, higain);    for (j=xadj[higain]; j<xadj[higain+1]; j++) {      k = adjncy[j];      oldgain = ed[k]-id[k];      kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);      INC_DEC(id[k], ed[k], kwgt);      /* Update the queue position */      if (where[k] == from) {        if (ed[k] > 0 && bndptr[k] == -1) {  /* It moves in boundary */          FPQueueDelete(&parts[qnum[k]][1], k);          FPQueueInsert(&parts[qnum[k]][0], k, (float)(ed[k]-id[k]));        }        else { /* It must be in the boundary already */          FPQueueUpdate(&parts[qnum[k]][0], k, (float)(oldgain), (float)(ed[k]-id[k]));        }      }      /* Update its boundary information */      if (ed[k] == 0 && bndptr[k] != -1)        BNDDelete(nbnd, bndind, bndptr, k);      else if (ed[k] > 0 && bndptr[k] == -1)        BNDInsert(nbnd, bndind, bndptr, k);    }  }  graph->mincut = mincut;  graph->gnvtxs = nbnd;  for (i=0; i<ncon; i++) {    FPQueueFree(&parts[i][0]);    FPQueueFree(&parts[i][1]);  }  GKfree((void **)&cand, (void **)&qnum, LTERM);}/************************************************************************** This function selects the partition number and the queue from which* we will move vertices out**************************************************************************/int Serial_SelectQueueOneWay(int ncon, float *npwgts, float *tpwgts, int from,    FPQueueType queues[MAXNCON][2]){  int i, cnum=-1;  float max=0.0;  for (i=0; i<ncon; i++) {    if (npwgts[from*ncon+i]-tpwgts[from*ncon+i] >= max &&        FPQueueGetQSize(&queues[i][0]) + FPQueueGetQSize(&queues[i][1]) > 0) {      max = npwgts[from*ncon+i]-tpwgts[i];      cnum = i;    }  }  return cnum;}/************************************************************************** This function computes the initial id/ed**************************************************************************/void Moc_Serial_Compute2WayPartitionParams(GraphType *graph){  int i, j, me, nvtxs, ncon, nbnd, mincut;  idxtype *xadj, *adjncy, *adjwgt;  float *nvwgt, *npwgts;  idxtype *id, *ed, *where;  idxtype *bndptr, *bndind;  nvtxs = graph->nvtxs;  ncon = graph->ncon;  xadj = graph->xadj;  nvwgt = graph->nvwgt;  adjncy = graph->adjncy;  adjwgt = graph->adjwgt;  where = graph->where;  npwgts = sset(2*ncon, 0.0, graph->gnpwgts);  id = idxset(nvtxs, 0, graph->sendind);  ed = idxset(nvtxs, 0, graph->recvind);  bndptr = idxset(nvtxs, -1, graph->sendptr);  bndind = graph->recvptr;  /*------------------------------------------------------------  / Compute now the id/ed degrees  /------------------------------------------------------------*/  nbnd = mincut = 0;  for (i=0; i<nvtxs; i++) {    me = where[i];    saxpy2(ncon, 1.0, nvwgt+i*ncon, 1, npwgts+me*ncon, 1);    for (j=xadj[i]; j<xadj[i+1]; j++) {      if (me == where[adjncy[j]])        id[i] += adjwgt[j];      else        ed[i] += adjwgt[j];    }    if (ed[i] > 0 || xadj[i] == xadj[i+1]) {      mincut += ed[i];      bndptr[i] = nbnd;      bndind[nbnd++] = i;    }  }  graph->mincut = mincut/2;  graph->gnvtxs = nbnd;}/************************************************************************** This function checks if the vertex weights of two vertices are below* a given set of values**************************************************************************/int Serial_AreAnyVwgtsBelow(int ncon, float alpha, float *vwgt1, float beta, float *vwgt2, float *limit){  int i;  for (i=0; i<ncon; i++)    if (alpha*vwgt1[i] + beta*vwgt2[i] < limit[i])      return 1;  return 0;}/**************************************************************************  This function computes the edge-cut of a serial graph.**************************************************************************/int ComputeSerialEdgeCut(GraphType *graph){  int i, j;  int cut = 0;  for (i=0; i<graph->nvtxs; i++) {    for (j=graph->xadj[i]; j<graph->xadj[i+1]; j++)      if (graph->where[i] != graph->where[graph->adjncy[j]])        cut += graph->adjwgt[j];  }  graph->mincut = cut/2;  return graph->mincut;}/**************************************************************************  This function computes the TotalV of a serial graph.**************************************************************************/int ComputeSerialTotalV(GraphType *graph, idxtype *home){  int i;  int totalv = 0;  for (i=0; i<graph->nvtxs; i++)    if (graph->where[i] != home[i])      totalv += (graph->vsize == NULL) ? graph->vwgt[i] : graph->vsize[i];  return totalv;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -