⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 cell_tet10.h

📁 一个用来实现偏微分方程中网格的计算库
💻 H
字号:
// $Id: cell_tet10.h 2501 2007-11-20 02:33:29Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA#ifndef __cell_tet10_h__#define __cell_tet10_h__// C++ includes// Local includes#include "cell_tet.h"/** * The \p Tet10 is an element in 3D composed of 10 nodes. * It is numbered like this:  \verbatim              3  TET10:      o             /|\            / | \        7  /  |  \9          o   |   o         /    |8   \        /     o     \       /    6 |      \    0 o.....o.|.......o 2       \      |      /        \     |     /         \    |    /        4 o   |   o 5           \  |  /            \ | /             \|/              o              1   \endverbatim */// ------------------------------------------------------------// Tet10 class definitionclass Tet10 : public Tet{public:  /**   * Constructor.  By default this element has no parent.   */  Tet10  (Elem* p=NULL);    /**   * @returns \p TET10   */  ElemType     type ()   const { return TET10; }  /**   * @returns 10   */  unsigned int n_nodes() const { return 10; }  /**   * @returns 8   */  unsigned int n_sub_elem() const { return 8; }    /**   * @returns true iff the specified (local) node number is a vertex.   */  virtual bool is_vertex(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is an edge.   */  virtual bool is_edge(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is a face.   */  virtual bool is_face(const unsigned int i) const;    /*   * @returns true iff the specified (local) node number is on the   * specified side   */  virtual bool is_node_on_side(const unsigned int n,			       const unsigned int s) const;    /*   * @returns true iff the specified (local) node number is on the   * specified edge   */  virtual bool is_node_on_edge(const unsigned int n,			       const unsigned int e) const;    /*   * @returns true iff the element map is definitely affine within   * numerical tolerances   */  virtual bool has_affine_map () const;  /**   * @returns SECOND   */  Order default_order() const { return SECOND; }    /**   * Builds a \p TRI6 built coincident with face i.     * The \p AutoPtr<Elem> handles the memory aspect.   */  AutoPtr<Elem> build_side (const unsigned int i,			    bool proxy) const;  /**   * Builds a \p EDGE3 built coincident with edge i.     * The \p AutoPtr<Elem> handles the memory aspect.   */  AutoPtr<Elem> build_edge (const unsigned int i) const;  virtual void connectivity(const unsigned int sc,			    const IOPackage iop,			    std::vector<unsigned int>& conn) const;  /**   * @returns 2 for all \p n   */  unsigned int n_second_order_adjacent_vertices (const unsigned int) const      { return 2; }  /**   * @returns the element-local number of the  \f$ v^{th} \f$ vertex   * that defines the \f$ n^{th} \f$ second-order node.   * Note that \p n is counted as depicted above, \f$ 4 \le n < 10 \f$.   */  unsigned short int second_order_adjacent_vertex (const unsigned int n,						   const unsigned int v) const;  /**   * @returns the child number \p c and element-local index \p v of the   * \f$ n^{th} \f$ second-order node on the parent element.  Note that   * the return values are always less \p this->n_children() and    * \p this->child(c)->n_vertices(), while \p n has to be greater or equal   * to \p * this->n_vertices().  For linear elements this returns 0,0.   * On refined second order elements, the return value will satisfy   * \p this->get_node(n)==this->child(c)->get_node(v)   */  virtual std::pair<unsigned short int, unsigned short int> 	  second_order_child_vertex (const unsigned int n) const;  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to   * element node numbers.   */  static const unsigned int side_nodes_map[4][6];  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ edge to   * element node numbers.   */  static const unsigned int edge_nodes_map[6][3];  protected:  #ifdef ENABLE_AMR    /**   * Matrix used to create the elements children.   */  float embedding_matrix (const unsigned int i,			  const unsigned int j,			  const unsigned int k) const;  //  { return _embedding_matrix[i][j][k]; }  /**   * Matrix that computes new nodal locations/solution values   * from current nodes/solution.   */  static const float _embedding_matrix[8][10][10];    /**   * This enumeration keeps track of which diagonal is selected during   * refinement.  In general there are three possible diagonals to   * choose when splitting the octahedron, and by choosing the shortest   * one we obtain the best element shape.   */  enum Diagonal    {DIAG_02_13=0,    // diagonal between edges (0,2) and (1,3)     DIAG_03_12=1,    // diagonal between edges (0,3) and (1,2)     DIAG_01_23=2,    // diagonal between edges (0,1) and (2,3)     INVALID_DIAG=99  // diagonal not yet selected    };  mutable Diagonal _diagonal_selection;#endifprivate:    /**   * Matrix that tells which vertices define the location   * of mid-side (or second-order) nodes   */  static const unsigned short int _second_order_adjacent_vertices[6][2];  /**   * Vector that names a child sharing each second order node.    */  static const unsigned short int _second_order_vertex_child_number[10];  /**   * Vector that names the child vertex index for each second order node.   */  static const unsigned short int _second_order_vertex_child_index[10];};// ------------------------------------------------------------// Tet10 class member functionsinlineTet10::Tet10(Elem* p) :  Tet(Tet10::n_nodes(), p)#ifdef ENABLE_AMR  , _diagonal_selection(INVALID_DIAG)#endif{}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -