📄 face_tri6.h
字号:
// $Id: face_tri6.h 2501 2007-11-20 02:33:29Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007 Benjamin S. Kirk, John W. Peterson // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version. // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU// Lesser General Public License for more details. // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA#ifndef __tri6_h__#define __tri6_h__// C++ includes// Local includes#include "libmesh_common.h"#include "face_tri.h"// Forward declarations/** * The \p Tri6 is an element in 2D composed of 6 nodes. * It is numbered like this: * \verbatim * TRI6: 2 * o * / \ * / \ * 5 o o 4 * / \ * / \ * o-----o-----o * 0 3 1 * \endverbatim */// ------------------------------------------------------------// Tri6 class definitionclass Tri6 : public Tri{public: /** * Constructor. By default this element has no parent. */ Tri6 (Elem* p=NULL) : Tri(Tri6::n_nodes(), p) {} /** * Constructor. Explicitly specifies the number of * nodes and neighbors for which storage will be allocated. */ Tri6 (const unsigned int nn, const unsigned int ns, Elem* p) : Tri(nn, ns, p) {} /** * @returns \p TRI6 */ ElemType type () const { return TRI6; } /** * @returns 6 */ unsigned int n_nodes() const { return 6; } /** * @returns 4 */ unsigned int n_sub_elem() const { return 4; } /** * @returns true iff the specified (local) node number is a vertex. */ virtual bool is_vertex(const unsigned int i) const; /** * @returns true iff the specified (local) node number is an edge. */ virtual bool is_edge(const unsigned int i) const; /** * @returns true iff the specified (local) node number is a face. */ virtual bool is_face(const unsigned int i) const; /* * @returns true iff the specified (local) node number is on the * specified side */ virtual bool is_node_on_side(const unsigned int n, const unsigned int s) const; /* * @returns true iff the specified (local) node number is on the * specified edge (== is_node_on_side in 2D) */ virtual bool is_node_on_edge(const unsigned int n, const unsigned int e) const { return this->is_node_on_side(n,e); } /* * @returns true iff the element map is definitely affine within * numerical tolerances */ virtual bool has_affine_map () const; /** * @returns SECOND */ Order default_order() const { return SECOND; } /** * @returns an id associated with the \p s side of this element. * The id is not necessariy unique, but should be close. This is * particularly useful in the \p MeshBase::find_neighbors() routine. * * We reimplemenet this method here for the \p Quad8 since we can * use the center node of each edge to provide a perfect (unique) * key. */ unsigned int key (const unsigned int s) const; AutoPtr<Elem> build_side (const unsigned int i, bool proxy) const; virtual void connectivity(const unsigned int sf, const IOPackage iop, std::vector<unsigned int>& conn) const; /** * @returns 2 for all \p n */ unsigned int n_second_order_adjacent_vertices (const unsigned int) const { return 2; } /** * @returns the element-local number of the \f$ v^{th} \f$ vertex * that defines the \f$ n^{th} \f$ second-order node. * Note that \p n is counted as depicted above, \f$ 3 \le n < 6 \f$. */ unsigned short int second_order_adjacent_vertex (const unsigned int n, const unsigned int v) const; /** * @returns the child number \p c and element-local index \p v of the * \f$ n^{th} \f$ second-order node on the parent element. Note that * the return values are always less \p this->n_children() and * \p this->child(c)->n_vertices(), while \p n has to be greater or equal * to \p * this->n_vertices(). For linear elements this returns 0,0. * On refined second order elements, the return value will satisfy * \p this->get_node(n)==this->child(c)->get_node(v) */ virtual std::pair<unsigned short int, unsigned short int> second_order_child_vertex (const unsigned int n) const; /** * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to * element node numbers. */ static const unsigned int side_nodes_map[3][3]; private: #ifdef ENABLE_AMR /** * Matrix used to create the elements children. */ float embedding_matrix (const unsigned int i, const unsigned int j, const unsigned int k) const { return _embedding_matrix[i][j][k]; } /** * Matrix that computes new nodal locations/solution values * from current nodes/solution. */ static const float _embedding_matrix[4][6][6]; #endifprivate: /** * Matrix that tells which vertices define the location * of mid-side (or second-order) nodes */ static const unsigned short int _second_order_adjacent_vertices[3][2]; /** * Vector that names a child sharing each second order node. */ static const unsigned short int _second_order_vertex_child_number[6]; /** * Vector that names the child vertex index for each second order node. */ static const unsigned short int _second_order_vertex_child_index[6];};#endif
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -