⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 face_tri6.h

📁 一个用来实现偏微分方程中网格的计算库
💻 H
字号:
// $Id: face_tri6.h 2501 2007-11-20 02:33:29Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA#ifndef __tri6_h__#define __tri6_h__// C++ includes// Local includes#include "libmesh_common.h"#include "face_tri.h"// Forward declarations/** * The \p Tri6 is an element in 2D composed of 6 nodes. * It is numbered like this: * \verbatim *  TRI6:  2       *         o       *        / \      *       /   \     *    5 o     o 4  *     /       \   *    /         \  *   o-----o-----o *   0     3     1 * \endverbatim */// ------------------------------------------------------------// Tri6 class definitionclass Tri6 : public Tri{public:  /**   * Constructor.  By default this element has no parent.   */  Tri6  (Elem* p=NULL) :    Tri(Tri6::n_nodes(), p) {}  /**   * Constructor.  Explicitly specifies the number of   * nodes and neighbors for which storage will be allocated.   */  Tri6 (const unsigned int nn,	const unsigned int ns,	Elem* p) :    Tri(nn, ns, p) {}  /**   * @returns \p TRI6   */  ElemType type ()   const { return TRI6; }  /**   * @returns 6   */  unsigned int n_nodes() const { return 6; }    /**   * @returns 4   */  unsigned int n_sub_elem() const { return 4; }    /**   * @returns true iff the specified (local) node number is a vertex.   */  virtual bool is_vertex(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is an edge.   */  virtual bool is_edge(const unsigned int i) const;  /**   * @returns true iff the specified (local) node number is a face.   */  virtual bool is_face(const unsigned int i) const;    /*   * @returns true iff the specified (local) node number is on the   * specified side   */  virtual bool is_node_on_side(const unsigned int n,			       const unsigned int s) const;    /*   * @returns true iff the specified (local) node number is on the   * specified edge (== is_node_on_side in 2D)   */  virtual bool is_node_on_edge(const unsigned int n,			       const unsigned int e) const  { return this->is_node_on_side(n,e); }    /*   * @returns true iff the element map is definitely affine within   * numerical tolerances   */  virtual bool has_affine_map () const;  /**   * @returns SECOND   */  Order default_order() const { return SECOND; }  /**   * @returns an id associated with the \p s side of this element.   * The id is not necessariy unique, but should be close.  This is   * particularly useful in the \p MeshBase::find_neighbors() routine.   *   * We reimplemenet this method here for the \p Quad8 since we can   * use the center node of each edge to provide a perfect (unique)   * key.   */  unsigned int key (const unsigned int s) const;    AutoPtr<Elem> build_side (const unsigned int i,			    bool proxy) const;  virtual void connectivity(const unsigned int sf,			    const IOPackage iop,			    std::vector<unsigned int>& conn) const;  /**   * @returns 2 for all \p n   */  unsigned int n_second_order_adjacent_vertices (const unsigned int) const      { return 2; }  /**   * @returns the element-local number of the  \f$ v^{th} \f$ vertex   * that defines the \f$ n^{th} \f$ second-order node.   * Note that \p n is counted as depicted above, \f$ 3 \le n < 6 \f$.   */  unsigned short int second_order_adjacent_vertex (const unsigned int n,						   const unsigned int v) const;  /**   * @returns the child number \p c and element-local index \p v of the   * \f$ n^{th} \f$ second-order node on the parent element.  Note that   * the return values are always less \p this->n_children() and    * \p this->child(c)->n_vertices(), while \p n has to be greater or equal   * to \p * this->n_vertices().  For linear elements this returns 0,0.   * On refined second order elements, the return value will satisfy   * \p this->get_node(n)==this->child(c)->get_node(v)   */  virtual std::pair<unsigned short int, unsigned short int> 	  second_order_child_vertex (const unsigned int n) const;  /**   * This maps the \f$ j^{th} \f$ node of the \f$ i^{th} \f$ side to   * element node numbers.   */  static const unsigned int side_nodes_map[3][3];   private:    #ifdef ENABLE_AMR    /**   * Matrix used to create the elements children.   */  float embedding_matrix (const unsigned int i,			  const unsigned int j,			  const unsigned int k) const  { return _embedding_matrix[i][j][k]; }  /**   * Matrix that computes new nodal locations/solution values   * from current nodes/solution.   */  static const float _embedding_matrix[4][6][6];  #endifprivate:    /**   * Matrix that tells which vertices define the location   * of mid-side (or second-order) nodes   */  static const unsigned short int _second_order_adjacent_vertices[3][2];      /**   * Vector that names a child sharing each second order node.    */  static const unsigned short int _second_order_vertex_child_number[6];  /**   * Vector that names the child vertex index for each second order node.   */  static const unsigned short int _second_order_vertex_child_index[6];};#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -