⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 sphere.h

📁 一个用来实现偏微分方程中网格的计算库
💻 H
字号:
// $Id: sphere.h 2501 2007-11-20 02:33:29Z benkirk $// The libMesh Finite Element Library.// Copyright (C) 2002-2007  Benjamin S. Kirk, John W. Peterson  // This library is free software; you can redistribute it and/or// modify it under the terms of the GNU Lesser General Public// License as published by the Free Software Foundation; either// version 2.1 of the License, or (at your option) any later version.  // This library is distributed in the hope that it will be useful,// but WITHOUT ANY WARRANTY; without even the implied warranty of// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU// Lesser General Public License for more details.  // You should have received a copy of the GNU Lesser General Public// License along with this library; if not, write to the Free Software// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA#ifndef __sphere_h__#define __sphere_h__// C++ includes#include <cmath>// Local includes#include "surface.h"#include "libmesh.h"/** * This class defines a sphere.  It also computes coordinate * transformations between cartesian  \f$ (x, y, z) \f$ * and spherical  \f$ (r, \theta, \phi) \f$ coordinates. * The spherical coordinates are valid in the ranges:   * * - \f$ 0 \le r      < \infty \f$ * - \f$ 0 \le \theta < \pi \f$ * - \f$ 0 \le \phi   < 2\pi \f$ * * The coordinates are related as follows: * \f$ \phi \f$ is the angle in the xy plane * starting with 0. from the positive x axis, * \f$ \theta \f$ is measured against the positive * z axis.   \verbatim          \      | Z           \theta|              \    |    .             \   |   .              \  |  .               \ | .                \|.  ---------------+---------.---------                /|\       .          Y               /phi\     .                /  |  \   .               /   |   \ .              /.........\             /     |        X /         \endverbatim * * \author Benjamin S. Kirk, Daniel Dreyer * \date 2002-2007 */// ------------------------------------------------------------// Sphere class definitionclass Sphere : public Surface{public:    /**   * Dummy Constructor.   */  Sphere ();  /**   * Constructs a sphere of radius r centered at c.   */  Sphere (const Point& c, const Real r);  /**   * Copy-constructor.   */  Sphere (const Sphere& other_sphere);  /**   * Destructor.  Does nothing at the moment.   */  ~Sphere ();  /**   * Defines a sphere of radius r centered at c.   */  void create_from_center_radius (const Point& c, const Real r);  /**   * @returns true if other_sphere intersects this sphere,   * false otherwise.   */  bool intersects (const Sphere& other_sphere) const;  /**   * @returns true if the point p is above the surface,   * false otherwise.   */  bool above_surface (const Point& p) const;  /**   * @returns true if the point p is below the surface,   * false otherwise.   */  bool below_surface (const Point& p) const;  /**   * @returns true if the point p is on the surface,   * false otherwise.  Note that the definition of on    * the surface really means "very close" to account    * for roundoff error.   */  bool on_surface (const Point& p) const;  /**   * @returns the closest point on the surface to point p.   */  Point closest_point (const Point& p) const;  /**   * @returns a unit vector normal to the surface at   * point p.     */  Point unit_normal (const Point& p) const;  /**   * Returns the radius of the sphere.   */  Real radius() const { return _rad; }  /**   * Returns the radius of the sphere as a writeable reference.   */  Real& radius() { return _rad; }  /**   * @returns the center of the sphere.   */   const Point& center() const { return _cent; }  /**   * @returns the center of the sphere.   */   Point& center() { return _cent; }  /**   * @returns the spherical coordinates for the   * cartesian coordinates \p cart.   */   Point surface_coords (const Point& cart) const;  /**   * @returns the cartesian coordinates for the   * spherical coordinates \p sph.   */   Point world_coords (const Point& sph) const;  private:    /**   * The center of the sphere.   */  Point _cent;  /**   * The radius of the sphere.   */  Real  _rad;};// ------------------------------------------------------------// Sphere inline functionsinlinePoint Sphere::surface_coords (const Point& cart) const{  // constant translation in the origin  const Point c (cart-this->center());  // phi: special care, so that it gives 0..2pi results  const Real phi = std::atan2(c(1), c(0));  return Point(/* radius */ c.size(),	       /* theta  */ std::atan2( std::sqrt( c(0)*c(0) + c(1)*c(1) ), c(2) ),	       /* phi    */ ( (phi < 0)  ?  2.*libMesh::pi+phi  :  phi ) );}inlinePoint Sphere::world_coords (const Point& sph) const{  const Real r     = sph(0);  const Real theta = sph(1);  const Real phi   = sph(2);  // constant translation out of the origin  return Point (/* x */ r*std::sin(theta)*std::cos(phi) + this->center()(0),		/* y */ r*std::sin(theta)*std::sin(phi) + this->center()(1),		/* z */ r*std::cos(theta)               + this->center()(2));}#endif

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -